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Introduction to Incompleteness

int.1 Historical Background

inc:int:bgr:
sec

In this section, we will briefly discuss historical developments that will help
put the incompleteness theorems in context. In particular, we will give a very
sketchy overview of the history of mathematical logic; and then say a few words
about the history of the foundations of mathematics.

digressionThe phrase “mathematical logic” is ambiguous. One can interpret the word
“mathematical” as describing the subject matter, as in, “the logic of mathe-
matics,” denoting the principles of mathematical reasoning; or as describing
the methods, as in “the mathematics of logic,” denoting a mathematical study
of the principles of reasoning. The account that follows involves mathematical
logic in both senses, often at the same time.

The study of logic began, essentially, with Aristotle, who lived approxi-
mately 384–322 bce. His Categories, Prior analytics, and Posterior analytics
include systematic studies of the principles of scientific reasoning, including a
thorough and systematic study of the syllogism.

Aristotle’s logic dominated scholastic philosophy through the middle ages;
indeed, as late as eighteenth century Kant maintained that Aristotle’s logic
was perfect and in no need of revision. But the theory of the syllogism is far
too limited to model anything but the most superficial aspects of mathematical
reasoning. A century earlier, Leibniz, a contemporary of Newton’s, imagined
a complete “calculus” for logical reasoning, and made some rudimentary steps
towards designing such a calculus, essentially describing a version of proposi-
tional logic.

The nineteenth century was a watershed for logic. In 1854 George Boole
wrote The Laws of Thought, with a thorough algebraic study of propositional
logic that is not far from modern presentations. In 1879 Gottlob Frege pub-
lished his Begriffsschrift (Concept writing) which extends propositional logic
with quantifiers and relations, and thus includes first-order logic. In fact,
Frege’s logical systems included higher-order logic as well, and more. In his
Basic Laws of Arithmetic, Frege set out to show that all of arithmetic could
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be derived in his Begriffsschrift from purely logical assumption. Unfortunately,
these assumptions turned out to be inconsistent, as Russell showed in 1902.
But setting aside the inconsistent axiom, Frege more or less invented modern
logic singlehandedly, a startling achievement. Quantificational logic was also
developed independently by algebraically-minded thinkers after Boole, includ-
ing Peirce and Schröder.

Let us now turn to developments in the foundations of mathematics. Of
course, since logic plays an important role in mathematics, there is a good
deal of interaction with the developments I just described. For example, Frege
developed his logic with the explicit purpose of showing that all of mathematics
could be based solely on his logical framework; in particular, he wished to show
that mathematics consists of a priori analytic truths instead of, as Kant had
maintained, a priori synthetic ones.

Many take the birth of mathematics proper to have occurred with the
Greeks. Euclid’s Elements, written around 300 B.C., is already a mature repre-
sentative of Greek mathematics, with its emphasis on rigor and precision. The
definitions and proofs in Euclid’s Elements survive more or less in tact in high
school geometry textbooks today (to the extent that geometry is still taught
in high schools). This model of mathematical reasoning has been held to be a
paradigm for rigorous argumentation not only in mathematics but in branches
of philosophy as well. (Spinoza even presented moral and religious arguments
in the Euclidean style, which is strange to see!)

Calculus was invented by Newton and Leibniz in the seventeenth century.
(A fierce priority dispute raged for centuries, but most scholars today hold that
the two developments were for the most part independent.) Calculus involves
reasoning about, for example, infinite sums of infinitely small quantities; these
features fueled criticism by Bishop Berkeley, who argued that belief in God was
no less rational than the mathematics of his time. The methods of calculus
were widely used in the eighteenth century, for example by Leonhard Euler,
who used calculations involving infinite sums with dramatic results.

In the nineteenth century, mathematicians tried to address Berkeley’s crit-
icisms by putting calculus on a firmer foundation. Efforts by Cauchy, Weier-
strass, Bolzano, and others led to our contemporary definitions of limits, conti-
nuity, differentiation, and integration in terms of “epsilons and deltas,” in other
words, devoid of any reference to infinitesimals. Later in the century, mathe-
maticians tried to push further, and explain all aspects of calculus, including
the real numbers themselves, in terms of the natural numbers. (Kronecker:
“God created the whole numbers, all else is the work of man.”) In 1872,
Dedekind wrote “Continuity and the irrational numbers,” where he showed
how to “construct” the real numbers as sets of rational numbers (which, as
you know, can be viewed as pairs of natural numbers); in 1888 he wrote “Was
sind und was sollen die Zahlen” (roughly, “What are the natural numbers, and
what should they be?”) which aimed to explain the natural numbers in purely
“logical” terms. In 1887 Kronecker wrote “Über den Zahlbegriff” (“On the
concept of number”) where he spoke of representing all mathematical object
in terms of the integers; in 1889 Giuseppe Peano gave formal, symbolic axioms
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for the natural numbers.

The end of the nineteenth century also brought a new boldness in dealing
with the infinite. Before then, infinitary objects and structures (like the set
of natural numbers) were treated gingerly; “infinitely many” was understood
as “as many as you want,” and “approaches in the limit” was understood as
“gets as close as you want.” But Georg Cantor showed that it was possible to
take the infinite at face value. Work by Cantor, Dedekind, and others help to
introduce the general set-theoretic understanding of mathematics that is now
widely accepted.

This brings us to twentieth century developments in logic and foundations.
In 1902 Russell discovered the paradox in Frege’s logical system. In 1904 Zer-
melo proved Cantor’s well-ordering principle, using the so-called “axiom of
choice”; the legitimacy of this axiom prompted a good deal of debate. Between
1910 and 1913 the three volumes of Russell and Whitehead’s Principia Mathe-
matica appeared, extending the Fregean program of establishing mathematics
on logical grounds. Unfortunately, Russell and Whitehead were forced to adopt
two principles that seemed hard to justify as purely logical: an axiom of in-
finity and an axiom of “reducibility.” In the 1900’s Poincaré criticized the use
of “impredicative definitions” in mathematics, and in the 1910’s Brouwer be-
gan proposing to refound all of mathematics in an “intuitionistic” basis, which
avoided the use of the law of the excluded middle (ϕ ∨ ¬ϕ).

Strange days indeed! The program of reducing all of mathematics to logic
is now referred to as “logicism,” and is commonly viewed as having failed, due
to the difficulties mentioned above. The program of developing mathematics
in terms of intuitionistic mental constructions is called “intuitionism,” and is
viewed as posing overly severe restrictions on everyday mathematics. Around
the turn of the century, David Hilbert, one of the most influential mathe-
maticians of all time, was a strong supporter of the new, abstract methods
introduced by Cantor and Dedekind: “no one will drive us from the paradise
that Cantor has created for us.” At the same time, he was sensitive to founda-
tional criticisms of these new methods (oddly enough, now called “classical”).
He proposed a way of having one’s cake and eating it too:

1. Represent classical methods with formal axioms and rules; represent
mathematical questions as formulas in an axiomatic system.

2. Use safe, “finitary” methods to prove that these formal deductive systems
are consistent.

Hilbert’s work went a long way toward accomplishing the first goal. In 1899,
he had done this for geometry in his celebrated book Foundations of geometry.
In subsequent years, he and a number of his students and collaborators worked
on other areas of mathematics to do what Hilbert had done for geometry.
Hilbert himself gave axiom systems for arithmetic and analysis. Zermelo gave
an axiomatization of set theory, which was expanded on by Fraenkel, Skolem,
von Neumann, and others. By the mid-1920s, there were two approaches that
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laid claim to the title of an axiomatization of “all” of mathematics, the Prin-
cipia mathematica of Russell and Whitehead, and what came to be known as
Zermelo-Fraenkel set theory.

In 1921, Hilbert set out on a research project to establish the goal of proving
these systems to be consistent. He was aided in this project by several of his
students, in particular Bernays, Ackermann, and later Gentzen. The basic
idea for accomplishing this goal was to cast the question of the possibility of
a derivation of an inconsistency in mathmatics as a combinatorial problem
about possible sequences of symbols, namely possible sequences of sentences
which meet the criterion of being a correct derivation of, say, ϕ ∧ ¬ϕ from
the axioms of an axiom system for arithmetic, analysis, or set theory. A proof
of the impossibility of such a sequence of symbols would—since it is itself
a mathematical proof—be formalizable in these axiomatic systems. In other
words, there would be some sentence Con which states that, say, arithmetic
is consistent. Moreover, this sentence should be provable in the systems in
question, especially if its proof requires only very restricted, “finitary” means.

The second aim, that the axiom systems developed would settle every math-
ematical question, can be made precise in two ways. In one way, we can for-
mulate it as follows: For any sentence ϕ in the language of an axiom system
for mathematics, either ϕ or ¬ϕ is provable from the axioms. If this were true,
then there would be no sentences which can neither be proved nor refuted on
the basis of the axioms, no questions which the axioms do not settle. An axiom
system with this property is called complete. Of course, for any given sentence
it might still be a difficult task to determine which of the two alternatives
holds. But in principle there should be a method to do so. In fact, for the ax-
iom and derivation systems considered by Hilbert, completeness would imply
that such a method exists—although Hilbert did not realize this. The second
way to interpret the question would be this stronger requirement: that there
be a mechanical, computational method which would determine, for a given
sentence ϕ, whether it is derivable from the axioms or not.

In 1931, Gödel proved the two “incompleteness theorems,” which showed
that this program could not succeed. There is no axiom system for mathematics
which is complete, specifically, the sentence that expresses the consistency of
the axioms is a sentence which can neither be proved nor refuted.

This struck a lethal blow to Hilbert’s original program. However, as is
so often the case in mathematics, it also opened up exciting new avenues for
research. If there is no one, all-encompassing formal system of mathematics,
it makes sense to develop more circumscribesd systems and investigate what
can be proved in them. It also makes sense to develop less restricted methods
of proof for establishing the consistency of these systems, and to find ways to
measure how hard it is to prove their consistency. Since Gödel showed that (al-
most) every formal system has questions it cannot settle, it makes sense to look
for “interesting” questions a given formal system cannot settle, and to figure
out how strong a formal system has to be to settle them. To the present day,
logicians have been pursuing these questions in a new mathematical discipline,
the theory of proofs.
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int.2 Definitions

inc:int:def:
sec

In order to carry out Hilbert’s project of formalizing mathematics and show-
ing that such a formalization is consistent and complete, the first order of busi-
ness would be that of picking a language, logical framework, and a system of
axioms. For our purposes, let us suppose that mathematics can be formalized
in a first-order language, i.e., that there is some set of constant symbols, func-
tion symbols, and predicate symbols which, together with the connectives and
quatifiers of first-order logic, allow us to express the claims of mathematics.
Most people agree that such a language exists: the language of set theory, in
which ∈ is the only non-logical symbol. That such a simple language is so
expressive is of course a very implausible claim at first sight, and it took a
lot of work to establish that practically of all mathematics can be expressed
in this very austere vocabulary. To keep things simple, for now, let’s restrict
our discussion to arithmetic, so the part of mathematics that just deals with
the natural numbers N. The natural language in which to express facts of
arithmetic is LA. LA contains a single two-place predicate symbol <, a single
constant symbol , one one-place function symbol ′, and two two-place function
symbols + and ×.

Definition int.1. A set of sentences Γ is a theory if it is closed under entail-
ment, i.e., if Γ = {ϕ : Γ � ϕ}.

There are two easy ways to specify theories. One is as the set of sentences
true in some structure. For instance, consider the structure for LA in which the
domain is N and all non-logical symbols are interpreted as you would expect.

Definition int.2. The standard model of arithmetic is the structure N defined
as follows:

1. |N| = N

2. N = 0

3. ′N(n) = n+ 1 for all n ∈ N

4. +N(n,m) = n+m for all n,m ∈ N

5. ×N(n,m) = n ·m for all n,m ∈ N

6. <N = {〈n,m〉 : n ∈ N,m ∈ N, n < m}

Definition int.3. The theory of true arithmetic is the set of sentences satisfied
in the standard model of arithmetic, i.e.,

TA = {ϕ : N � ϕ}.

TA is a theory, for whenever TA � ϕ, ϕ is satisfied in every structure which
satisfies TA. Since M � TA, M � ϕ, and so ϕ ∈ TA.
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The other way to specify a theory Γ is as the set of sentences entailed
by some set of sentences Γ0. In that case, Γ is the “closure” of Γ0 under
entailment. Specifying a theory this way is only interesting if Γ0 is explicitly
specified, e.g., if the elements of Γ0 are listed. At the very least, Γ0 has to be
decidable, i.e., there has to be a computable test for when a sentence counts
as an element of Γ0 or not. We call the sentences in Γ0 axioms for Γ , and Γ
axiomatized by Γ0.

Definition int.4. A theory Γ is axiomatized by Γ0 iff

Γ = {ϕ : Γ0 � ϕ}

Definition int.5. The theory Q axiomatized by the following sentences is
known as “Robinson’s Q” and is a very simple theory of arithmetic.

∀x∀y (x′ = y′→ x = y) (Q1)

∀x  6= x′ (Q2)

∀x (x 6= →∃y x = y′) (Q3)

∀x (x+ ) = x (Q4)

∀x∀y (x+ y′) = (x+ y)′ (Q5)

∀x (x× ) =  (Q6)

∀x∀y (x× y′) = ((x× y) + x) (Q7)

∀x∀y (x < y↔∃z (x+ z′ = y)) (Q8)

The set of sentences {Q1, . . . , Q8} are the axioms of Q, so Q consists of all
sentences entailed by them:

Q = {ϕ : {Q1, . . . , Q8} � ϕ}.

Definition int.6. Suppose ϕ(x) is a formula in LA with free variables x and
y1, . . . , yn. Then any sentence of the form

∀y1 . . . ∀yn ((ϕ() ∧ ∀x (ϕ(x)→ ϕ(x′)))→∀xϕ(x))

is an instance of the induction schema.
Peano arithmetic PA is the theory axiomatized by the axioms of Q together

with all instances of the induction schema.

explanation Every instance of the induction schema is true in N. This is easiest to see
if the formula ϕ only has one free variable x. Then ϕ(x) defines a subset XA

of N in N. XA is the set of all n ∈ N such that N, s � ϕ(x) when s(x) = n.
The corresponding instance of the induction schema is

((ϕ() ∧ ∀x (ϕ(x)→ ϕ(x′)))→∀xϕ(x))

If its antecedent is true in N, then 0 ∈ XA and, whenever n ∈ XA, so is n+ 1.
Since 0 ∈ XA, we get 1 ∈ XA. With 1 ∈ XA we get 2 ∈ XA. And so on. So
for every n ∈ N, n ∈ XA. But this means that ∀xϕ(x) is satisfied in N.
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Both Q and PA are axiomatized theories. The big question is, how strong
are they? For instance, can PA prove all the truths about N that can be
expressed in LA? Specifically, do the axioms of PA settle all the questions
that can be formulated in LA?

Another way to put this is to ask: Is PA = TA? For TA obviously does
prove (i.e., it includes) all the truths about N, and it settles all the questions
that can be formulated in LA, since if ϕ is a sentence in LA, then either N � ϕ
or N � ¬ϕ, and so either TA � ϕ or TA � ¬ϕ. Call such a theory complete.

Definition int.7. A theory Γ is complete iff for every sentence ϕ in its lan-
guage, either Γ � ϕ or Γ � ¬ϕ.

explanationBy the Completeness Theorem, Γ � ϕ iff Γ ` ϕ, so Γ is complete iff for
every sentence ϕ in its language, either Γ ` ϕ or Γ ` ¬ϕ.

Another question we are led to ask is this: Is there a computational proce-
dure we can use to test if a sentence is in TA, in PA, or even just in Q? We
can make this more precise by defining when a set (e.g., a set of sentences) is
decidable.

Definition int.8. A set X is decidable iff its characteristic function χX : X →
{0, 1}, with

χX(x) =

{
1 if x ∈ X
0 if x /∈ X

is computable.

So our question becomes: Is TA (PA, Q) decidable?
The answer to all these questions will be: no. None of these theories are

decidable. However, this phenomenon is not specific to these particular theo-
ries. In fact, any theory that satisfies certain conditions is subject to the same
results. One of these conditions, which Q and PA satisfy, is that they are
axiomatized by a decidable set of axioms.

Definition int.9. A theory is axiomatizable if it is axiomatized by a decidable
set of axioms.

Example int.10. Any theory axiomatized by a finite set of sentences is ax-
iomatizable, since any finite set is decidable. Thus, Q, for instance, is axiom-
atizable.

Schematically axiomatized theories like PA are also axiomatizable. For to
test if ψ is among the axioms of PA, i.e., to compute the function χX where
χX(ψ) = 1 if ψ is an axiom of PA and = 0 otherwise, we can do the following:
First, check if ψ is one of the axioms of Q. If it is, the answer is “yes” and the
value of χX(ψ) = 1. If not, test if it is an instance of the induction schema.
This can be done systematically; in this case, perhaps it’s easiest to see that
it can be done as follows: Any instance of the induction schema begins with a
number of universal quantifiers, and then a sub-formula that is a conditional.
The consequent of that conditional is ∀xϕ(x, y1, . . . , yn) where x and y1, . . . ,

introduction rev: 445393f (2018-08-14) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


yn are all the free variables of ϕ and the initial quantifiers of ψ bind the
variables y1, . . . , yn. Once we have extracted this ϕ and checked that its free
variables match the variables bound by the universal qauntifiers at the front
and ∀x, we go on to check that the antecedent of the conditional matches

ϕ(, y1, . . . , yn) ∧ ∀x (ϕ(x, y1, . . . , yn)→ ϕ(x′, y1, . . . , yn))

Again, if it does, ψ is an instance of the induction schema, and if it doesn’t, ψ
isn’t.

In answering this question—and the more general question of which theories
are complete or decidable—it will be useful to consider also the following defi-
nition. Recall that a set X is enumerable iff it is empty or if there is a surjective
function f : N→ X. Such a function is called an enumeration of X.

Definition int.11. A set X is called computably enumerable (c.e. for short)
iff it is empty or it has a computable enumeration.

In addition to axiomatizability, another condition on theories to which the
incompleteness theorems apply will be that they are strong enough to prove ba-
sic facts about computable functions and decidable relations. By “basic facts,”
we mean sentences which express what the values of computable functions are
for each of their arguments. And by “strong enough” we mean that the theories
in question count these sentences among its theorems. For instance, consider
a prototypical computable function: addition. The value of + for arguments
2 and 3 is 5, i.e., 2 + 3 = 5. A sentence in the language of arithmetic that
expresses that the value of + for arguments 2 and 3 is 5 is: (2 + 3) = 5. And,
e.g., Q proves this sentence. More generally, we would like there to be, for
each computable function f(x1, x2) a formula ϕf (x1, x2, y) in LA such that
Q ` ϕf (n1, n2,m) whenever f(n1, n2) = m. In this way, Q proves that the
value of f for arguments n1, n2 is m. In fact, we require that it proves a bit
more, namely that no other number is the value of f for arguments n1, n2. And
the same goes for decidable relations. This is made precise in the following two
definitions.

Definition int.12. A formula ϕ(x1, . . . , xk, y) represents the function f : Nk →
N in Γ iff whenever f(n1, . . . , nk) = m, then

1. Γ ` ϕ(n1, . . . , nk,m), and

2. Γ ` ∀y(ϕ(n1, . . . , nk, y)→ y = m).

Definition int.13. A formula ϕ(x1, . . . , xk) represents the relation R ⊆ Nk
iff,

1. whenever R(n1, . . . , nk), Γ ` ϕ(n1, . . . , nk), and

2. whenever not R(n1, . . . , nk), Γ ` ¬ϕ(n1, . . . , nk).
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A theory is “strong enough” for the incompleteness theorems to apply if
it represents all computable functions and all decidable relations. Q and its
extensions satisfy this condition, but it will take us a while to establish this—
it’s a non-trivial fact about the kinds of things Q can prove, and it’s hard to
show because Q has only a few axioms from which we’ll have to prove all these
facts. However, Q is a very weak theory. So although it’s hard to prove that
Q represents all computable functions, most interesting theories are stronger
than Q, i.e., prove more than Q does. And if Q proves something, any stronger
theory does; since Q represents all computable functions, every stronger theory
does. This means that many interesting theories meet this condition of the
incompleteness theorems. So our hard work will pay off, since it shows that
the incompletess theorems apply to a wide range of theories. Certainly, any
theory aiming to formalize “all of mathematics” must prove everything that
Q proves, since it should at the very least be able to capture the results of
elementary computations. So any theory that is a candidate for a theory of
“all of mathematics” will be one to which the incompleteness theorems apply.

int.3 Overview of Incompleteness Results

inc:int:ovr:
sec

Hilbert expected that mathematics could be formalized in an axiomatizable
theory which it would be possible to prove complete and decidable. Moreover,
he aimed to prove the consistency of this theory with very weak, “finitary,”
means, which would defend classical mathematics agianst the challenges of
intuitionism. Gödel’s incompleteness theorems showed that these goals cannot
be achieved.

Gödel’s first incompleteness theorem showed that a version of Russell and
Whitehead’s Principia Mathematica is not complete. But the proof was actu-
ally very general and applies to a wide variety of theories. This means that it
wasn’t just that Principia Mathematica did not manage to completely capture
mathematics, but that no acceptable theory does. It took a while to isolate
the features of theories that suffice for the incompleteness theorems to apply,
and to generalize Gödel’s proof to apply make it depend only on these fea-
tures. But we are now in a position to state a very general version of the first
incompleteness theorem for theories in the language LA of arithmetic.

Theorem int.14. If Γ is a consistent and axiomatizable theory in LA which
represents all computable functions and decidable relations, then Γ is not com-
plete.

To say that Γ is not complete is to say that for at least one sentence ϕ,
Γ 0 ϕ and Γ 0 ¬ϕ. Such a sentence is called independent (of Γ ). We can in
fact relatively quickly prove that there must be independent sentences. But
the power of Gödel’s proof of the theorem lies in the fact that it exhibits a
specific example of such an independent sentence. The intriguing construction
produces a sentence GΓ , called a Gödel sentence for Γ , which is unprovable
because in Γ , GΓ is equivalent to the claim that GΓ is unprovable in Γ . It
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does so constructively, i.e., given an axiomatization of Γ and a description of
the proof system, the proof gives a method for actually writing down GΓ .

The construction in Gödel’s proof requires that we find a way to express
in LA the properties of and operations on terms and formulas of LA itself.
These include properties such as “ϕ is a sentence,” “δ is a derivation of ϕ,”
and operations such as ϕ[t/x]. This way must (a) express these properties and
relations via a “coding” of symbols and sequences thereof (which is what terms,
formulas, derivations, etc. are) as natural numbers (which is what LA can talk
about). It must (b) do this in such a way that Γ will prove the relevant facts,
so we must show that these properties are coded by decidable properties of
natural numbers and the operations correspond to computable functions on
natural numbers. This is called “arithmetization of syntax.”

Before we investigate how syntax can be arithmetized, however, we will
consider the condition that Γ is “strong enough,” i.e., represents all computable
functions and decidable relations. This requires that we give a precise definition
of “computable.” This can be done in a number of ways, e.g., via the model
of Turing machines, or as those functions computable by programs in some
general-purpose programming language. Since our aim is to represent these
functions and relations in a theory in the language LA, however, it is best to
pick a simple definition of computability of just numerical functions. This is the
notion of recursive function. So we will first discuss the recursive functions. We
will then show that Q already represents all recursive functions and relations.
This will allow us to apply the incompleteness theorem to specific theories such
as Q and PA, since we will have established that these are examples of theories
that are “strong enough.”

The end result of the arithmetization of syntax is a formula ProvΓ (x) which,
via the coding of formulas as numbers, expresses provability from the axioms
of Γ . Specifically, if ϕ is coded by the number n, and Γ ` ϕ, then Γ ` ProvΓ (n).
This “provability predicate” for Γ allows us also to express, in a certain sense,
the consistency of Γ as a sentence of LA: let the “consistency statemetn”
for Γ be the sentence ¬ProvΓ (n), where we take n to be the code of a contra-
diction, e.g., of ⊥. The second incompleteness theorem states that consistent
axiomatizable theories also do not prove their own consistency statements. The
conditions required for this theorem to apply are a bit more stringent than just
that the theory represents all computable functions and decidable relations,
but we will show that PA satisifes them.

int.4 Undecidability and Incompleteness

inc:int:dec:
sec

Gödel’s proof of the incompleteness theorems require arithmetization of
syntax. But even without that we can obtain some nice results just on the
assumtion that a theory represents all decidable relations. The proof is a
diagonal argument similar to the proof of the undecidability of the halting
problem.
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Theorem int.15. If Γ is a consistent theory that represents every decidable
relation, then Γ is not decidable.

Proof. Suppose Γ were decidable. We show that if Γ represents every decidable
relation, it must be inconsistent.

Decidable properties (one-place relations) are represented by formulas with
one free variable. Let ϕ0(x), ϕ1(x), . . . , be a computable enumeration of all
such formulas. Now consider the following set D ⊆ N:

D = {n : Γ ` ¬ϕn(n)}

The set D is decidable, since we can test if n ∈ D by first computing ϕn(x), and
from this ¬ϕn(n). Obviously, substituting the term n for every free occurrence
of x in ϕn(x) and prefixing ϕ(n) by ¬ is a mechanical matter. By assumption,
Γ is decidable, so we can test if ¬ϕ(n) ∈ Γ . If it is, n ∈ D, and if it isn’t,
n /∈ D. So D is likewise decidable.

Since Γ represents all decidable properties, it represents D. And the for-
mulas which represent D in Γ are all among ϕ0(x), ϕ1(x), . . . . So let d be
a number such that ϕd(x) represents D in Γ . If d /∈ D, then, since ϕd(x)
represents D, Γ ` ¬ϕd(d). But that means that d meets the defining condition
of D, and so d ∈ D. This contradicts d /∈ D. So by indirect proof, d ∈ D.

Since d ∈ D, by the definition of D, Γ ` ¬ϕd(d). On the other hand, since
ϕd(x) represents D in Γ , Γ ` ϕd(d). Hence, Γ is inconsistent.

explanationThe preceding theorem shows that no theory that represents all decidable
relations can be decidable. We will show that Q does represent all decidable
relations; this means that all theories that include Q, such as PA and TA,
also do, and hence also are not decidable.

We can also use this result to obtain a weak version of the first incomplete-
ness theorem. Any theory that is axiomatizable and complete is decidable.
Consistent theories that are axiomatizable and represent all decidable proper-
ties then cannot be complete.

Theorem int.16. If Γ is axiomatizable and complete it is decidable.

Proof. Any inconsistent theory is decidable, since inconsistent theories contain
all sentences, so the answer to the question “is ϕ ∈ Γ” is always “yes,” i.e., can
be decided.

So suppose Γ is consistent, and furthermore is axiomatizable, and complete.
Since Γ is axiomatizable, it is computably enumerable. For we can enumerate
all the correct derivations from the axioms of Γ by a computable function. From
a correct derivation we can compute the sentence it derives, and so together
there is a computable function that enumerates all theorems of Γ . A sentence
is a theorem of Γ iff ¬ϕ is not a theorem, since Γ is consistent and complete.
We can therefore decide if ϕ ∈ Γ as follows. Enumerate all theorems of Γ .
When ϕ appears on this list, we know that Γ ` ϕ. When ¬ϕ appears on this
list, we know that Γ 0 ϕ. Since Γ is complete, one of these cases eventually
obtains, so the procedure eventually produces and answer.
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Corollary int.17. inc:int:dec:

cor:incompleteness

If Γ is consistent, axiomatizable, and represents every
decidable property, it is not complete.

Proof. If Γ were complete, it would be decidable by the previous theorem (since
it is axiomatizable and consistent). But since Γ represents every decidable
property, it is not decidable, by the first theorem.

Problem int.1. Show that TA = {ϕ : N � ϕ} is not axiomatizable. You may
assume that TA represents all decidable properties.

Once we have established that, e.g., Q, represents all decidable properties,
the corollary tells us that Q must be incomplete. However, its proof does not
provide an example of an independent sentence; it merely shows that such a
sentence must exist. For this, we have to arithmetize syntax and follow Gödel’s
original proof idea. And of course, we still have to show the first claim, namely
that Q does, in fact, represent all decidable properties.
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