Rosser’s Theorem

Can we modify Gödel’s proof to get a stronger result, replacing “ω-consistent” with simply “consistent”? The answer is “yes,” using a trick discovered by Rosser. Rosser’s trick is to use a “modified” provability predicate $RProv_T(y)$ instead of $Prov_T(y)$.

Theorem inp.1. Let T be any consistent, axiomatizable theory extending Q. Then T is not complete.

Proof. Recall that $Prov_T(y)$ is defined as $\exists x \ Prf_T(x,y)$, where $Prf_T(x,y)$ represents the decidable relation which holds if x is the Gödel number of a derivation of the sentence with Gödel number y. The relation that holds between x and y if x is the Gödel number of a refutation of the sentence with Gödel number y is also decidable. Let $not(x)$ be the primitive recursive function which does the following: if x is the code of a formula φ, $not(x)$ is a code of $\neg \varphi$. Then $Ref_T(x,y)$ holds iff $Prf_T(x,not(y))$. Let $Ref_T(x,y)$ represent it. Then, if $T \vdash \neg \varphi$ and δ is a corresponding derivation, $Q \vdash Ref_T(\delta, \varphi)$. We define $RProv_T(y)$ as

$$\exists x (Prf_T(x,y) \land \forall z (z < x \rightarrow \neg Ref_T(z,y))).$$

Roughly, $RProv_T(y)$ says “there is a proof of y in T, and there is no shorter refutation of y.” (You might find it convenient to read $RProv_T(y)$ as “y is shmovable.”) Assuming T is consistent, $RProv_T(y)$ is true of the same numbers as $Prov_T(y)$; but from the point of view of provability in T (and we now know that there is a difference between truth and provability!) the two have different properties. (If T is inconsistent, then the two do not hold of the same numbers!)

By the fixed-point lemma, there is a formula ρ_T such that

$$Q \vdash \rho_T \leftrightarrow \neg RProv_T(\varphi_T). \tag{1}$$

In contrast to the proof of ??, here we claim that if T is consistent, T doesn’t prove ρ_T, and T also doesn’t prove $\neg \rho_T$. (In other words, we don’t need the assumption of ω-consistency.)

First, let’s show that $T \not\vdash \rho_T$. Suppose it did, so there is a derivation of ρ_T from T; let n be its Gödel number. Then $Q \vdash Prf_T(\pi, \rho_T)$, since Prf_T represents Prf_T in Q. Also, for each $k < n$, k is not the Gödel number of $\neg \rho_T$, since T is consistent. So for each $k < n$, $Q \vdash \neg Ref_T(\pi, \rho_T)$. By ??(2), $Q \vdash \forall z (z < \pi \rightarrow \neg Ref_T(z, \rho_T))$. Thus,

$$Q \vdash \exists x (Prf_T(x, \rho_T) \land \forall z (z < x \rightarrow \neg Ref_T(z, \rho_T))),$$

but that’s just $RProv_T(\varphi_T)$. By eq. (1), $Q \vdash \neg \rho_T$. Since T extends Q, also $T \vdash \neg \rho_T$. We’ve assumed that $T \vdash \rho_T$, so T would be inconsistent, contrary to the assumption of the theorem.
Now, let’s show that $T \not \vdash \neg \rho_T$. Again, suppose it did, and suppose n is the Gödel number of a derivation of $\neg \rho_T$. Then $\text{Ref}_T(n,^\# \rho_T^\#)$ holds, and since Ref_T represents Ref_T in Q, $Q \vdash \text{Ref}_T(\pi,^\gamma \rho_T^\gamma)$. We’ll again show that T would then be inconsistent because it would also prove ρ_T. Since $Q \vdash \rho_T \iff \neg \text{RProv}_T(\gamma \rho_T^{-})$, and since T extends Q, it suffices to show that $Q \vdash \neg \text{RProv}_T(\gamma \rho_T^{-})$. The sentence $\neg \text{RProv}_T(\gamma \rho_T^{-})$, i.e.,

$$
\neg \exists x (\text{Prf}_T(x, \gamma \rho_T^{-}) \land \forall z (z < x \rightarrow \neg \text{Ref}_T(z, \gamma \rho_T^{-}))
$$

is logically equivalent to

$$
\forall x (\text{Prf}_T(x, \gamma \rho_T^{-}) \rightarrow \exists z (z < x \land \text{Ref}_T(z, \gamma \rho_T^{-})))
$$

We argue informally using logic, making use of facts about what Q proves. Suppose x is arbitrary and $\text{Prf}_T(x, \gamma \rho_T^{-})$. We already know that $T \not \vdash \rho_T$, and so for every k, $Q \vdash \neg \text{Prf}_T(k, \gamma \rho_T^{-})$. Thus, for every k it follows that $x \neq k$. In particular, we have (a) that $x \neq \pi$. We also have $\neg(x = 0 \lor x = 1 \lor \cdots \lor x = \overline{n} - 1)$ and so by $\neg \exists \overline{n} (2)$, (b) $\neg(x < \pi)$. By $\neg \exists \overline{n} (2)$, we have $\pi < x \land \text{Ref}_T(\pi, \gamma \rho_T^{-})$, and from that $\exists z (z < x \land \text{Ref}_T(z, \gamma \rho_T^{-}))$. Since x was arbitrary we get

$$
\forall x (\text{Prf}_T(x, \gamma \rho_T^{-}) \rightarrow \exists z (z < x \land \text{Ref}_T(z, \gamma \rho_T^{-})))
$$

as required.

\[\square\]

Photo Credits

Bibliography