Peano arithmetic, or PA, is the theory extending Q with induction axioms for all formulas. In other words, one adds to Q axioms of the form

\[(\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x'))) \rightarrow \forall x \varphi(x)\]

for every formula \(\varphi\). Notice that this is really a schema, which is to say, infinitely many axioms (and it turns out that PA is not finitely axiomatizable). But since one can effectively determine whether or not a string of symbols is an instance of an induction axiom, the set of axioms for PA is computable. PA is a much more robust theory than Q. For example, one can easily prove that addition and multiplication are commutative, using induction in the usual way. In fact, most finitary number-theoretic and combinatorial arguments can be carried out in PA.

Since PA is computably axiomatized, the provability predicate \(\text{Prf}_{PA}(x, y)\) is computable and hence represented in Q (and so, in PA). As before, I will take \(\text{Prf}_{PA}(x, y)\) to denote the formula representing the relation. Let \(\text{Prov}_{PA}(y)\) be the formula \(\exists x \text{Prf}_{PA}(x, y)\), which, intuitively says, “\(y\) is provable from the axioms of PA.” The reason we need a little bit more than the axioms of Q is we need to know that the theory we are using is strong enough to prove a few basic facts about this provability predicate. In fact, what we need are the following facts:

P1. If \(PA \vdash \varphi\), then \(PA \vdash \text{Prov}_{PA}(\ulcorner \varphi \urcorner)\)

P2. For all formulas \(\varphi\) and \(\psi\),

\[PA \vdash \text{Prov}_{PA}(\ulcorner \varphi \rightarrow \psi \urcorner) \rightarrow (\text{Prov}_{PA}(\ulcorner \varphi \urcorner) \rightarrow \text{Prov}_{PA}(\ulcorner \psi \urcorner))\]

P3. For every formula \(\varphi\),

\[PA \vdash \text{Prov}_{PA}(\ulcorner \varphi \urcorner) \rightarrow \text{Prov}_{PA}(\ulcorner \text{Prov}_{PA}(\ulcorner \varphi \urcorner) \urcorner)\].

The only way to verify that these three properties hold is to describe the formula \(\text{Prov}_{PA}(y)\) carefully and use the axioms of PA to describe the relevant formal proofs. Conditions (1) and (2) are easy; it is really condition (3) that requires work. (Think about what kind of work it entails...) Carrying out the details would be tedious and uninteresting, so here we will ask you to take it on faith that PA has the three properties listed above. A reasonable choice of \(\text{Prov}_{PA}(y)\) will also satisfy

P4. If \(PA \vdash \text{Prov}_{PA}(\ulcorner \varphi \urcorner)\), then \(PA \vdash \varphi\).

But we will not need this fact.

Incidentally, Gödel was lazy in the same way we are being now. At the end of the 1931 paper, he sketches the proof of the second incompleteness theorem, and promises the details in a later paper. He never got around to it; since...
everyone who understood the argument believed that it could be carried out (he did not need to fill in the details.)

Photo Credits

Bibliography