inp.1 The Fixed-Point Lemma

inc:inp:fix: sec The fixed-point lemma says that for any formula $\psi(x)$, there is a sentence φ such that $\mathbf{T} \vdash \varphi \leftrightarrow \psi(\lceil \varphi \rceil)$, provided \mathbf{T} extends \mathbf{Q} . In the case of the liar sentence, we'd want φ to be equivalent (provably in \mathbf{T}) to " φ " is false," i.e., the statement that φ is the Gödel number of a false sentence. To understand the idea of the proof, it will be useful to compare it with Quine's informal gloss of φ as, "yields a falsehood when preceded by its own quotation' yields a falsehood when preceded by its own quotation of taking an expression, and then forming a sentence by preceding this expression by its own quotation may be called diagonalizing the expression, and the result its diagonalization. So, the diagonalization of 'yields a falsehood when preceded by its own quotation' is "'yields a falsehood when preceded by its own quotation." Now note that Quine's liar sentence is not the diagonalization of 'yields a falsehood' but of 'yields a falsehood when preceded by its own quotation." So the property being diagonalized to yield the liar sentence itself involves diagonalization!

To formalize this in **T**, we have to find a way to formalize diag. The function diag(n) is computable, in fact, it is primitive recursive: if n is the Gödel number of a formula $\alpha(x)$, diag(n) returns the Gödel number of $\alpha(\lceil \alpha(x) \rceil)$. (Recall, $\lceil \alpha(x) \rceil$ is the standard numeral of the Gödel number of $\alpha(x)$, i.e., $\frac{\pi}{\alpha(x)}$.) If diag were a function symbol in **T** representing the function diag, we could take φ to be the formula $\psi(\text{diag}(\lceil \psi(\text{diag}(x)) \rceil))$. Notice that

$$\operatorname{diag}(^{*}\psi(\operatorname{diag}(x))^{\#}) = ^{*}\psi(\operatorname{diag}(^{\Gamma}\psi(\operatorname{diag}(x))^{\Gamma}))^{\#}$$
$$= ^{*}\omega^{\#}$$

Assuming T can derive

$$diag(\lceil \psi(diag(x)) \rceil) = \lceil \varphi \rceil,$$

it can derive $\psi(\operatorname{diag}(\lceil \psi(\operatorname{diag}(x)) \rceil)) \leftrightarrow \psi(\lceil \varphi \rceil)$. But the left hand side is, by definition, φ .

Of course, diag will in general not be a function symbol of \mathbf{T} , and certainly is not one of \mathbf{Q} . But, since diag is computable, it is representable in \mathbf{Q} by some formula $\theta_{\mathrm{diag}}(x,y)$. So instead of writing $\psi(diag(x))$ we can write $\exists y \ (\theta_{\mathrm{diag}}(x,y) \land \psi(y))$. Otherwise, the proof sketched above goes through, and in fact, it goes through already in \mathbf{Q} .

Lemma inp.1. Let $\psi(x)$ be any formula with one free variable x. Then there is a sentence φ such that $\mathbf{Q} \vdash \varphi \leftrightarrow \psi(\ulcorner \varphi \urcorner)$.

inc:inp:fix: lem:fixed-point

Proof. Given $\psi(x)$, let $\alpha(x)$ be the formula $\exists y \, (\theta_{\text{diag}}(x,y) \land \psi(y))$ and let φ be its diagonalization, i.e., the formula $\alpha(\lceil \alpha(x) \rceil)$.

Since θ_{diag} represents diag, and diag($^{*}\alpha(x)^{\#}$) = $^{*}\varphi^{\#}$, **Q** can derive

$$\theta_{\text{diag}}(\lceil \alpha(x) \rceil, \lceil \varphi \rceil)$$
 (1) inc:inp:fix:

 $\forall y \, (\theta_{\text{diag}}(\lceil \alpha(x) \rceil, y) \to y = \lceil \varphi \rceil). \tag{2}$

repdiag1 inc:inp:fix: repdiag2

Now we show that $\mathbf{Q} \vdash \varphi \leftrightarrow \psi(\ulcorner \varphi \urcorner)$. We argue informally, using just logic and facts derivable in \mathbf{Q} .

First, suppose φ , i.e., $\alpha(\lceil \alpha(x) \rceil)$. Going back to the definition of $\alpha(x)$, we see that $\alpha(\lceil \alpha(x) \rceil)$ just is

$$\exists y \, (\theta_{\mathrm{diag}}(\lceil \alpha(x) \rceil, y) \land \psi(y)).$$

Consider such a y. Since $\theta_{\text{diag}}(\lceil \alpha(x) \rceil, y)$, by eq. (2), $y = \lceil \varphi \rceil$. So, from $\psi(y)$ we have $\psi(\lceil \varphi \rceil)$.

Now suppose $\psi(\lceil \varphi \rceil)$. By eq. (1), we have

$$\theta_{\text{diag}}(\lceil \alpha(x) \rceil, \lceil \varphi \rceil) \wedge \psi(\lceil \varphi \rceil).$$

It follows that

$$\exists y \, (\theta_{\mathrm{diag}}(\lceil \alpha(x) \rceil, y) \land \psi(y)).$$

But that's just $\alpha(\lceil \alpha(x) \rceil)$, i.e., φ .

digression

You should compare this to the proof of the fixed-point lemma in computability theory. The difference is that here we want to define a *statement* in terms of itself, whereas there we wanted to define a *function* in terms of itself; this difference aside, it is really the same idea.

Problem inp.1. A formula $\varphi(x)$ is a truth definition if $\mathbf{Q} \vdash \psi \leftrightarrow \varphi(\lceil \psi \rceil)$ for all sentences ψ . Show that no formula is a truth definition by using the fixed-point lemma.

Photo Credits

Bibliography