art.1 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up inductively from constants and variables according to the formation rules for terms. Since sequences of symbols can be coded as numbers—using a coding scheme for the symbols plus a way to code sequences of numbers—assigning Gödel numbers to terms is not difficult. The challenge is rather to show that the property a number has if it is the Gödel number of a correctly formed term is computable, or in fact primitive recursive.

Variables and constant symbols are the simplest terms, and testing whether x is the Gödel number of such a term is easy: $\text{Var}(x)$ holds if x is $\#v_i\#$ for some i. In other words, x is a sequence of length 1 and its single element $(x)_0$ is the code of some variable v_i, i.e., $x = \langle\langle 1, i\rangle\rangle$ for some i. Similarly, $\text{Const}(x)$ holds if x is $\#c_i\#$ for some i. Both of these relations are primitive recursive, since if such an i exists, it must be $x < i$:

$$\text{Var}(x) \iff (\exists i < x) \ x = \langle\langle 1, i\rangle\rangle$$
$$\text{Const}(x) \iff (\exists i < x) \ x = \langle\langle 2, i\rangle\rangle$$

Proposition art.1. The relations $\text{Term}(x)$ and $\text{CITerm}(x)$ which hold iff x is the Gödel number of a term or a closed term, respectively, are primitive recursive.

Proof. A sequence of symbols s is a term iff there is a sequence $s_0, \ldots, s_{k-1} = s$ of terms which records how the term s was formed from constant symbols and variables according to the formation rules for terms. To express that such a putative formation sequence follows the formation rules it has to be the case that, for each $i < k$, either

1. s_i is a variable v_j, or
2. s_i is a constant symbol c_j, or
3. s_i is built from n terms t_1, \ldots, t_n occurring prior to place i using an n-place function symbol f_j^n.

To show that the corresponding relation on Gödel numbers is primitive recursive, we have to express this condition primitive recursively, i.e., using primitive recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s_0, \ldots, s_{k-1}, i.e., $y = \langle\langle \#s_0\#, \ldots, \#s_{k-1}\#\rangle\rangle$. It codes a formation sequence for the term with Gödel number x iff for all $i < k$:

1. $\text{Var}(\langle y \rangle_i)$, or
2. $\text{Const}(\langle y \rangle_i)$, or
3. there is an n and a number $z = \langle z_1, \ldots, z_n \rangle$ such that each z_l is equal to some $(y)_{i'}$ for $i' < i$ and

$$(y)_i = \#f^n_j(\# \rightsquigarrow \text{flatten}(z) \rightsquigarrow \#),$$

and moreover $(y)_{k-1} = x$. (The function flatten(z) turns the sequence $(\#t_1, \ldots, \#t_n)$ into $\#t_1, \ldots, t_n$ and is primitive recursive.)

The indices j, n, the Gödel numbers z_l of the terms t_l, and the code z of the sequence $\langle z_1, \ldots, z_n \rangle$, in (3) are all less than y. We can replace k above with $\text{len}(y)$. Hence we can express “y is the code of a formation sequence of the term with Gödel number x” in a way that shows that this relation is primitive recursive.

We now just have to convince ourselves that there is a primitive recursive bound on y. But if x is the Gödel number of a term, it must have a formation sequence with at most $\text{len}(x)$ terms (since every term in the formation sequence of s must start at some place in s, and no two subterms can start at the same place). The Gödel number of each subterm of s is of course $\leq x$. Hence, there always is a formation sequence with code $\leq p_{k-1}^{k(x+1)}$, where $k = \text{len}(x)$.

For CIterm, simply leave out the clause for variables. \hfill \square

Problem art.1. Show that the function flatten(z), which turns the sequence $(\#t_1, \ldots, \#t_n)$ into $\#t_1, \ldots, t_n$, is primitive recursive.

Proposition art.2. The function $\text{num}(n) = \#\pi^\#$ is primitive recursive.

Proof. We define $\text{num}(n)$ by primitive recursion:

\begin{align*}
\text{num}(0) &= \#0 \\
\text{num}(n + 1) &= \#(\# \rightsquigarrow \text{num}(n) \rightsquigarrow \#).
\end{align*}

\hfill \square

Photo Credits

Bibliography