art.1 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up inductively from constants and variables according to the formation rules for terms. Since sequences of symbols can be coded as numbers—using a coding scheme for the symbols plus a way to code sequences of numbers—assigning Gödel numbers to terms is not difficult. The challenge is rather to show that the property a number has if it is the Gödel number of a correctly formed term is computable, or in fact primitive recursive.

Proposition art.1. The relations $\text{Term}(x)$ and $\text{CI}Term(x)$ which hold iff x is the Gödel number of a term or a closed term, respectively, are primitive recursive.

Proof. A sequence of symbols s is a term iff there is a sequence $s_0, \ldots, s_{k-1} = s$ of terms which records how the term s was formed from constant symbols and variables according to the formation rules for terms. To express that such a putative formation sequence follows the formation rules it has to be the case that, for each $i < k$, either

1. s_i is a variable v_j, or
2. s_i is a constant symbol c_j, or
3. s_i is built from n terms t_1, \ldots, t_n occurring prior to place i using an n-place function symbol f^n_j.

To show that the corresponding relation on Gödel numbers is primitive recursive, we have to express this condition primitive recursively, i.e., using primitive recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s_0, \ldots, s_{k-1}, i.e., $y = \langle \text{^s}_0, \ldots, \text{^s}_{k-1} \rangle$. It codes a formation sequence for the term with Gödel number x iff for all $i < k$:

1. there is a j such that $(y)_i = \text{^v}_j$, or
2. there is a j such that $(y)_i = \text{^c}_j$, or
3. there is an n and a number $z = \langle z_1, \ldots, z_n \rangle$ such that each z_i is equal to some $(y)_{i'}$ for $i' < i$ and
\[
(y)_i = \text{^f}^n_j(\text{^flatten}(z) \text{^z})^a,
\]
and moreover $(y)_{k-1} = x$. The function $\text{flatten}(z)$ turns the sequence $\langle \text{^t}_1, \ldots, \text{^t}_n \rangle$ into $\text{^t}_1, \ldots, \text{^t}_n$ and is primitive recursive.

The indices j, n, the Gödel numbers z_i of the terms t_i, and the code z of the sequence $\langle z_1, \ldots, z_n \rangle$, in (3) are all less than y. We can replace k above with $\text{len}(y)$. Hence we can express “y is the code of a formation sequence of the
term with Gödel number $x^\#$ in a way that shows that this relation is primitive recursive.

We now just have to convince ourselves that there is a primitive recursive bound on y. But if x is the Gödel number of a term, it must have a formation sequence with at most $\text{len}(x)$ terms (since every term in the formation sequence of s must start at some place in s, and no two subterms can start at the same place). The Gödel number of each subterm of s is of course $\leq x$. Hence, there always is a formation sequence with code $\leq x^{\text{len}(x)}$.

For ClTerm, simply leave out the clause for variables.

Alternative proof of Proposition art.1. The inductive definition says that constant symbols and variables are terms, and if t_1, \ldots, t_n are terms, then so is $f^j_n(t_1, \ldots, t_n)$, for any n and j. So terms are formed in stages: constant symbols and variables at stage 0, terms involving one function symbol at stage 1, those involving at least two nested function symbols at stage 2, etc. Let’s say that a sequence of symbols s is a term of level l iff s can be formed by applying the inductive definition of terms l (or fewer) times, i.e., it “becomes” a term by stage l or before. So s is a term of level $l + 1$ iff

1. s is a variable v_j, or

2. s is a constant symbol c_j, or

3. s is built from n terms t_1, \ldots, t_n of level l and an n-place function symbol f^j_n.

To show that the corresponding relation on Gödel numbers is primitive recursive, we have to express this condition primitive recursively, i.e., using primitive recursive functions, relations, and bounded quantification.

The number x is the Gödel number of a term s of level $l + 1$ iff

1. there is a j such that $x = v^\#_j$, or

2. there is a j such that $x = c^\#_j$, or

3. there is an n, a j, and a number $z = (z_1, \ldots, z_n)$ such that each z_i is the Gödel number of a term of level l and

$$x = f^\#_j((z^\# \triangleright \text{flatten}(z) \triangleright ^\#)^\#),$$

and moreover $(y)_{k-1} = x$.

The indices j, n, the Gödel numbers z_i of the terms t_i, and the code z of the sequence (z_1, \ldots, z_n), in (3) are all less than x. So we get a primitive recursive definition by:

$$\text{lTerm}(x, 0) = \text{Var}(x) \lor \text{Const}(x)$$

$$\text{lTerm}(x, l + 1) = \text{Var}(x) \lor \text{Const}(x) \lor$$

$$(\exists z < x) (((\forall i < \text{len}(z)) \text{lTerm}(z, i)) \land$$

$$(\exists j < x) x = (f^\#_j(z^\# \triangleright \text{flatten}(z) \triangleright ^\#)^\#))$$
We can now define $\text{Term}(x)$ by $\text{ITerm}(x,x)$, since the level of a term is always less than the Gödel number of the term.

Problem art.1. Show that the function flatten(z), which turns the sequence $\langle t_1^#, \ldots, t_n^# \rangle$ into $t_1^#, \ldots, t_n^#$, is primitive recursive.

Proposition art.2. The function $\text{num}(n) = n^#$ is primitive recursive.

Proof. We define $\text{num}(n)$ by primitive recursion:

\[
\begin{align*}
\text{num}(0) &= 0^# \\
\text{num}(n + 1) &= \text{num}(n) \bowtie \text{num}(n + 1)^#.
\end{align*}
\]

Photo Credits

Bibliography