
art.1 Coding Terms

inc:art:trm:
sec

explanationA term is simply a certain kind of sequence of symbols: it is built up
inductively from constants and variables according to the formation rules for
terms. Since sequences of symbols can be coded as numbers—using a coding
scheme for the symbols plus a way to code sequences of numbers—assigning
Gödel numbers to terms is not difficult. The challenge is rather to show that
the property a number has if it is the Gödel number of a correctly formed term
is computable, or in fact primitive recursive.

Variables and constant symbols are the simplest terms, and testing whether
x is the Gödel number of such a term is easy: Var(x) holds if x is #vi

for
some i. In other words, x is a sequence of length 1 and its single element (x)0
is the code of some variable vi, i.e., x is 〈〈1, i〉〉 for some i. Similarly, Const(x)
holds if x is #ci

for some i. Both of these relations are primitive recursive,
since if such an i exists, it must be < x:

Var(x)⇔ (∃i < x) x = 〈〈1, i〉〉
Const(x)⇔ (∃i < x) x = 〈〈2, i〉〉

Proposition art.1.inc:art:trm:

prop:term-primrec

The relations Term(x) and ClTerm(x) which hold iff x
is the Gödel number of a term or a closed term, respectively, are primitive
recursive.

Proof. A sequence of symbols s is a term iff there is a sequence s0, . . . , sk−1 = s
of terms which records how the term s was formed from constant symbols and
variables according to the formation rules for terms. To express that such a
putative formation sequence follows the formation rules it has to be the case
that, for each i < k, either

1. si is a variable vj , or

2. si is a constant symbol cj , or

3. si is built from n terms t1, . . . , tn occurring prior to place i using an
n-place function symbol f nj .

To show that the corresponding relation on Gödel numbers is primitive recur-
sive, we have to express this condition primitive recursively, i.e., using primitive
recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s0, . . . , sk−1, i.e., y =
〈 #s0

#, . . . , #sk
#〉. It codes a formation sequence for the term with Gödel num-

ber x iff for all i < k:

1. Var((y)i), or

2. Const((y)i), or

coding-terms rev: 074a3f1 (2018-11-13) by OLP / CC–BY 1

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

3. there is an n and a number z = 〈z1, . . . , zn〉 such that each zl is equal to
some (y)i′ for i′ < i and

(y)i = #f nj (# _ flatten(z) _ #)#,

and moreover (y)k−1 = x. (The function flatten(z) turns the sequence 〈 #t1
#, . . . , #tn

#〉
into #t1, . . . , tn

and is primitive recursive.)
The indices j, n, the Gödel numbers zl of the terms tl, and the code z of

the sequence 〈z1, . . . , zn〉, in (3) are all less than y. We can replace k above
with len(y). Hence we can express “y is the code of a formation sequence of the
term with Gödel number x” in a way that shows that this relation is primitive
recursive.

We now just have to convince ourselves that there is a primitive recursive
bound on y. But if x is the Gödel number of a term, it must have a formation
sequence with at most len(x) terms (since every term in the formation sequence
of s must start at some place in s, and no two subterms can start at the same
place). The Gödel number of each subterm of s is of course ≤ x. Hence, there
always is a formation sequence with code ≤ xlen(x).

For ClTerm, simply leave out the clause for variables.

Problem art.1. Show that the function flatten(z), which turns the sequence
〈 #t1

#, . . . , #tn
#〉 into #t1, . . . , tn

#, is primitive recursive.

Proposition art.2. inc:art:trm:

prop:num-primrec

The function num(n) = #n# is primitive recursive.

Proof. We define num(n) by primitive recursion:

num(0) = ##

num(n + 1) = #′(# _ num(n) _ #)#.

Photo Credits

Bibliography

2

	Coding Terms
	Photo Credits
	Bibliography

