art.1 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up inductively from constants and variables according to the formation rules for terms. Since sequences of symbols can be coded as numbers—using a coding scheme for the symbols plus a way to code sequences of numbers—assigning Gödel numbers to terms is not difficult. The challenge is rather to show that the property a number has if it is the Gödel number of a correctly formed term is computable, or in fact primitive recursive.

Variables and constant symbols are the simplest terms, and testing whether \(x \) is the Gödel number of such a term is easy: \(\text{Var}(x) \) holds if \(x \) is \(\#v_i\# \) for some \(i \). In other words, \(x \) is a sequence of length 1 and its single element \((x)_0 \) is the code of some variable \(v_i \), i.e., \(x = \langle \langle 1, i \rangle \rangle \) for some \(i \). Similarly, \(\text{Const}(x) \) holds if \(x \) is \(\#c_i\# \) for some \(i \). Both of these relations are primitive recursive, since if such an \(i \) exists, it must be \(< x \):

\[
\text{Var}(x) \leftrightarrow (\exists i < x) \ x = \langle \langle 1, i \rangle \rangle \\
\text{Const}(x) \leftrightarrow (\exists i < x) \ x = \langle \langle 2, i \rangle \rangle
\]

Proposition art.1. The relations \(\text{Term}(x) \) and \(\text{ClTerm}(x) \) which hold iff \(x \) is the Gödel number of a term or a closed term, respectively, are primitive recursive.

Proof. A sequence of symbols \(s \) is a term iff there is a sequence \(s_0, \ldots, s_{k-1} = s \) of terms which records how the term \(s \) was formed from constant symbols and variables according to the formation rules for terms. To express that such a putative formation sequence follows the formation rules it has to be the case that, for each \(i < k \), either

1. \(s_i \) is a variable \(v_j \), or
2. \(s_i \) is a constant symbol \(c_j \), or
3. \(s_i \) is built from \(n \) terms \(t_1, \ldots, t_n \) occurring prior to place \(i \) using an \(n \)-place function symbol \(f^k \).

To show that the corresponding relation on Gödel numbers is primitive recursive, we have to express this condition primitive recursively, i.e., using primitive recursive functions, relations, and bounded quantification.

Suppose \(y \) is the number that codes the sequence \(s_0, \ldots, s_{k-1} \), i.e., \(y = \langle \#s_0\#, \ldots, \#s_{k-1}\# \rangle \). It codes a formation sequence for the term with Gödel number \(x \) iff for all \(i < k \):

1. \(\text{Var}(\langle y \rangle_i) \), or
2. \(\text{Const}(\langle y \rangle_i) \), or
3. there is an n and a number $z = \langle z_1, \ldots, z_n \rangle$ such that each z_l is equal to some $(y)_{i'}$ for $i' < i$ and

$$(y)_i = ^{\#} f^n_j (\sim \text{flattened}(z) \sim ^{\#}),$$

and moreover $(y)_{k-1} = x$. (The function flattened(z) turns the sequence $(^\# t_1^#, \ldots, ^\# t_n^#)$ into $^\# t_1, \ldots, t_n^#$ and is primitive recursive.)

The indices j, n, the Gödel numbers z_l of the terms t_l, and the code z of the sequence $\langle z_1, \ldots, z_n \rangle$, in (3) are all less than y. We can replace k above with $\text{len}(y)$. Hence we can express “y is the code of a formation sequence of the term with Gödel number x” in a way that shows that this relation is primitive recursive.

We now just have to convince ourselves that there is a primitive recursive bound on y. But if x is the Gödel number of a term, it must have a formation sequence with at most $\text{len}(x)$ terms (since every term in the formation sequence of s must start at some place in s, and no two subterms can start at the same place). The Gödel number of each subterm of s is of course $\leq x$. Hence, there always is a formation sequence with code $\leq x^{\text{len}(x)}$.

For ClTerm, simply leave out the clause for variables.

Problem art.1. Show that the function flattened(z), which turns the sequence $\langle ^\# t_1^#, \ldots, ^\# t_n^# \rangle$ into $^\# t_1, \ldots, t_n^#$, is primitive recursive.

Proposition art.2. The function $\text{num}(n) = ^{\#} n^#$ is primitive recursive.

Proof. We define $\text{num}(n)$ by primitive recursion:

$$\begin{align*}
\text{num}(0) &= ^{\#} 0^#
\text{num}(n + 1) &= ^{\#} t (^\# \sim \text{num}(n) \sim ^{\#})^#.
\end{align*}$$

Photo Credits

Bibliography