
Chapter udf

Arithmetization of Syntax

Note that arithmetization for signed tableaux is not yet available.

art.1 Introduction

inc:art:int:
sec

In order to connect computability and logic, we need a way to talk about the
objects of logic (symbols, terms, formulas, derivations), operations on them,
and their properties and relations, in a way amenable to computational treat-
ment. We can do this directly, by considering computable functions and re-
lations on symbols, sequences of symbols, and other objects built from them.
Since the objects of logical syntax are all finite and built from an enumer-
able sets of symbols, this is possible for some models of computation. But
other models of computation—such as the recursive functions—-are restricted
to numbers, their relations and functions. Moreover, ultimately we also want
to be able to deal with syntax within certain theories, specifically, in theo-
ries formulated in the language of arithmetic. In these cases it is necessary to
arithmetize syntax, i.e., to represent syntactic objects, operations on them, and
their relations, as numbers, arithmetical functions, and arithmetical relations,
respectively. The idea, which goes back to Leibniz, is to assign numbers to
syntactic objects.

It is relatively straightforward to assign numbers to symbols as their “codes.”
Some symbols pose a bit of a challenge, since, e.g., there are infinitely many
variables, and even infinitely many function symbols of each arity n. But of
course it’s possible to assign numbers to symbols systematically in such a way
that, say, v2 and v3 are assigned different codes. Sequences of symbols (such
as terms and formulas) are a bigger challenge. But if can deal with sequences
of numbers purely arithmetically (e.g., by the powers-of-primes coding of se-
quences), we can extend the coding of individual symbols to coding of sequences
of symbols, and then further to sequences or other arrangements of formulas,
such as derivations. This extended coding is called “Gödel numbering.” Every
term, formula, and derivation is assigned a Gödel number.
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By coding sequences of symbols as sequences of their codes, and by chos-
ing a system of coding sequences that can be dealt with using computable
functions, we can then also deal with Gödel numbers usign computable func-
tions. In practice, all the relevant functions will be primitive recursive. For
instance, computing the length of a sequence and computing the i-th element
of a sequence from the code of the sequence are both primitive recursive. If
the number coding the sequence is, e.g., the Gödel number of a formula ϕ,
we immediately see that the length of a formula and the (code of the) i-th
symbol in a formula can also be computed from the Gödel number of ϕ. It
is a bit harder to prove that, e.g., the property of being the Gödel number of
a correctly formed term, of being the Gödel number of a corret derivation is
primitive recursive. It is nevertheless possible, because the sequences of interest
(terms, formulas, derivations) are inductively defined.

As an example, consider the operation of substitution. If ϕ is a formula,
x a variable, and t a term, then ϕ[t/x] is the result of replacing every free
occurrence of x in ϕ by t. Now suppose we have assigned Gödel numbers to ϕ,
x, t—say, k, l, and m, respectively. The same scheme assignes a Gödel number
to [t/x], say, n. This mapping—of k, l, m to n—is the arithmetical analog of
the substitution operation. When the substitution operation maps ϕ, x, t to
ϕ[t/x], the arithmetized substitution functions maps the Gödel numbers k, l,
m to the Gödel number n. We will see that this function is primitive recursive.

Arithmetization of syntax is not just of abstract interest, although it was
originally a non-trivial insight that languages like the language of arithmetic,
which do not come with mechanisms for “talking about” languages can, after
all, formalize complex properties of expressions. It is then just a small step to
ask what a theory in this language, such as Peano arithmetic, can prove about
its own language (including, e.g., whether sentences are provable or true). This
leads us to the famous limitative theorems of Gödel (about unprovability) and
Tarski (the undefinability of truth). But the trick of arithmetizing syntax is also
important in order to prove some important results in computability theory,
e.g., about the computational prower of theories or the relationship between
different models of computability. The arithmetization of syntax serves as a
model for arithmetizing other objects and properties. For instance, it is sim-
ilarly possible to arithmetize configurations and computations (say, of Turing
machines). This makes it possible to simulate computations in one model (e.g.,
Turing machines) in another (e.g., recursive functions).

art.2 Coding Symbols

inc:art:cod:
sec

The basic language L of first order logic makes use of the symbols

⊥ ¬ ∨ ∧ → ∀ ∃ = ( ) ,

together with enumerable sets of variables and constant symbols, and enumer-
able sets of function symbols and predicate symbols of arbitrary arity. We can
assign codes to each of these symbols in such a way that every symbol is as-
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signed a unique number as its code, and no two different symbols are assigned
the same number. We know that this is possible since the set of all symbols is
enumerable and so there is a bijection between it and the set of natural num-
bers. But we want to make sure that we can recover the symbol (as well as
some information about it, e.g., the arity of a function symbol) from its code
in a computable way. There are many possible ways of doing this, of course.
Here is one such way, which uses primitive recursive functions. (Recall that
〈n0, . . . , nk〉 is the number coding the sequence of numbers n0, . . . , nk.)

Definition art.1. If s is a symbol of L, let the symbol code cs be defined as
follows:

1. If s is among the logical symbols, cs is given by the following table:

⊥ ¬ ∨ ∧ → ∀
〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 〈0, 4〉 〈0, 5〉
∃ = ( ) ,
〈0, 6〉 〈0, 7〉 〈0, 8〉 〈0, 9〉 〈0, 10〉

2. If s is the i-th variable vi, then cs = 〈1, i〉.

3. If s is the i-th constant symbol cni , then cs = 〈2, i〉.

4. If s is the i-th n-ary function symbol f ni , then cs = 〈3, n, i〉.

5. If s is the i-th n-ary predicate symbol Pni , then cs = 〈4, n, i〉.

Proposition art.2. The following relations are primitive recursive:

1. Fn(x, n) iff x is the code of f ni for some i, i.e., x is the code of an n-ary
function symbol.

2. Pred(x, n) iff x is the code of Pni for some i or x is the code of = and
n = 2, i.e., x is the code of an n-ary predicate symbol.

Definition art.3. If s0, . . . , sn−1 is a sequence of symbols, its Gödel number
is 〈cs0 , . . . , csn−1〉.

explanationNote that codes and Gödel numbers are different things. For instance, the
variable v5 has a code cv5 = 〈1, 5〉 = 22 · 36. But the variable v5 considered as
a term is also a sequence of symbols (of length 1). The Gödel number #v5

# of

the term v5 is 〈cv5〉 = 2cv5+1 = 22
2·36+1.

Example art.4. Recall that if k0, . . . , kn−1 is a sequence of numbers, then
the code of the sequence 〈k0, . . . , kn−1〉 in the power-of-primes coding is

2k0+1 · 3k1+1 · · · · · pkn−1

n−1 ,

where pi is the i-th prime (starting with p0 = 2). So for instance, the formula
v0 = , or, more explicitly, =(v0, c0), has the Gödel number

〈c=, c(, cv0 , c,, cc0 , c)〉.
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Here, c= is 〈0, 7〉 = 20+1 · 37=1, cv0 is 〈1, 0〉 = 21+1 · 30+1, etc. So #= (v0, c0)#

is

2c=+1 · 3c(+1 · 5cv0+1 · 7c,+1 · 11cc0+1 · 13c)+1 =

22
1·38+1 · 32

1·39+1 · 52
2·31+1 · 72

1·311+1 · 112
3·31+1 · 132

1·310+1 =

213 123 · 339 367 · 513 · 7354 295 · 1125 · 13118 099.

art.3 Coding Terms

inc:art:trm:
sec

explanation A term is simply a certain kind of sequence of symbols: it is built up
inductively from constants and variables according to the formation rules for
terms. Since sequences of symbols can be coded as numbers—using a coding
scheme for the symbols plus a way to code sequences of numbers—assigning
Gödel numbers to terms is not difficult. The challenge is rather to show that
the property a number has if it is the Gödel number of a correctly formed term
is computable, or in fact primitive recursive.

Proposition art.5. inc:art:trm:

prop:term-primrec

The relations Term(x) and ClTerm(x) which hold iff x
is the Gödel number of a term or a closed term, respectively, are primitive
recursive.

Proof. A sequence of symbols s is a term iff there is a sequence s0, . . . , sk−1 = s
of terms which records how the term s was formed from constant symbols and
variables according to the formation rules for terms. To express that such a
putative formation sequence follows the formation rules it has to be the case
that, for each i < k, either

1. si is a variable vj , or

2. si is a constant symbol cj , or

3. si is built from n terms t1, . . . , tn occurring prior to place i using an
n-place function symbol f nj .

To show that the corresponding relation on Gödel numbers is primitive recur-
sive, we have to express this condition primitive recursively, i.e., using primitive
recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s0, . . . , sk−1, i.e., y =
〈 #s0

#, . . . , #sk
#〉. It codes a formation sequence for the term with Gödel num-

ber x iff for all i < k:

1. there is a j such that (y)i = #vj
#, or

2. there is a j such that (y)i = #cj
#, or

3. there is an n and a number z = 〈z1, . . . , zn〉 such that each zl is equal to
some (y)i′ for i′ < i and

(y)i = #f nj (# _ flatten(z) _ #)#,
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and moreover (y)k−1 = x. The function flatten(z) turns the sequence 〈 #t1
#, . . . , #tn

#〉
into #t1, . . . , tn

# and is primitive recursive.

The indices j, n, the Gödel numbers zl of the terms tl, and the code z of
the sequence 〈z1, . . . , zn〉, in (3) are all less than y. We can replace k above
with len(y). Hence we can express “y is the code of a formation sequence of the
term with Gödel number x” in a way that shows that this relation is primitive
recursive.

We now just have to convince ourselves that there is a primitive recursive
bound on y. But if x is the Gödel number of a term, it must have a formation
sequence with at most len(x) terms (since every term in the formation sequence
of s must start at some place in s, and no two subterms can start at the same
place). The Gödel number of each subterm of s is of course ≤ x. Hence, there
always is a formation sequence with code ≤ xlen(x).

For ClTerm, simply leave out the clause for variables.

Alternative proof of Proposition art.5. The inductive definition says that con-
stant symbols and variables are terms, and if t1, . . . , tn are terms, then so is
f nj (t1, . . . , tn), for any n and j. So terms are formed in stages: constant sym-
bols and variables at stage 0, terms involving one function symbol at stage 1,
those involving at least two nested function symbols at stage 2, etc. Let’s say
that a sequence of symbols s is a term of level l iff s can be formed by applying
the inductive definition of terms l (or fewer) times, i.e., it “becomes” a term
by stage l or before. So s is a term of level l + 1 iff

1. s is a variable vj , or

2. s is a constant symbol cj , or

3. s is built from n terms t1, . . . , tn of level l and an n-place function
symbol f nj .

To show that the corresponding relation on Gödel numbers is primitive recur-
sive, we have to express this condition primitive recursively, i.e., using primitive
recursive functions, relations, and bounded quantification.

The number x is the Gödel number of a term s of level l + 1 iff

1. there is a j such that x = #vj
#, or

2. there is a j such that x = #cj
#, or

3. there is an n, a j, and a number z = 〈z1, . . . , zn〉 such that each zi is the
Gödel number of a term of level l and

x = #f nj (# _ flatten(z) _ #)#,

and moreover (y)k−1 = x.
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The indices j, n, the Gödel numbers zi of the terms ti, and the code z of the
sequence 〈z1, . . . , zn〉, in (3) are all less than x. So we get a primitive recursive
definition by:

lTerm(x, 0) = Var(x) ∨ Const(x)

lTerm(x, l + 1) = Var(x) ∨ Const(x) ∨
(∃z < x) ((∀i < len(z)) lTerm((z)i, l) ∧

(∃j < x) x = ( #f
len(z)
j (# _ flatten(z) _ #)#))

We can now define Term(x) by lTerm(x, x), since the level of a term is always
less than the Gödel number of the term.

Problem art.1. Show that the function flatten(z), which turns the sequence
〈 #t1

#, . . . , #tn
#〉 into #t1, . . . , tn

#, is primitive recursive.

Proposition art.6. inc:art:trm:

prop:num-primrec

The function num(n) = #n# is primitive recursive.

Proof. We define num(n) by primitive recursion:

num(0) = ##

num(n+ 1) = #′(# _ num(n) _ #)#.

art.4 Coding Formulas

inc:art:frm:
sec

Proposition art.7. The relation Atom(x) which holds iff x is the Gödel num-
ber of an atomic formula, is primitive recursive.

Proof. The number x is the Gödel number of an atomic formula iff one of the
following holds:

1. There are n, j < x, and z < x such that for each i < n, Term((z)i) and
x =

#Pnj (# _ flatten(z) _ #)#.

2. There are z1, z2 < x such that Term(z1), Term(z2), and x =

#=(# _ z1 _
#,# _ z2 _

#)#.

3. x = #⊥#.

4. x = #>#.
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Proposition art.8.inc:art:frm:

prop:frm-primrec

The relation Frm(x) which holds iff x is the Gödel number
of a formula is primitive recursive.

Proof. A sequence of symbols s is a formula iff there is formation sequence s0,
. . . , sk−1 = s of formula which records how s was formed from atomic formulas
according to the formation rules. The code for each si (and indeed of the code
of the sequence 〈s0, . . . , sk−1〉 is less than the code x of s.

Problem art.2. Give a detailed proof of Proposition art.8 along the lines of
the first proof of Proposition art.5

Problem art.3. Give a detailed proof of Proposition art.8 along the lines of
the alternate proof of Proposition art.5

Proposition art.9.inc:art:frm:

prop:freeocc-primrec

The relation FreeOcc(x, z, i), which holds iff the i-th
symbol of the formula with Gödel number x is a free occurrence of the variable
with Gödel number z, is primitive recursive.

Proof. Exercise.

Problem art.4. Prove Proposition art.9. You may make use of the fact that
any substring of a formula which is a formula is a sub-formula of it.

Proposition art.10. The property Sent(x) which holds iff x is the Gödel num-
ber of a sentence is primitive recursive.

Proof. A sentence is a formula without free occurrences of variables. So Sent(x)
holds iff

(∀i < len(x)) (∀z < x) ((∃j < z) z = #vj
#→¬FreeOcc(x, z, i)).

art.5 Substitution

inc:art:sub:
sec

Proposition art.11.inc:art:sub:

prop:subst-primrec

There is a primitive recursive function Subst(x, y, z)
with the property that

Subst( #ϕ#, #t#, #u#) = #ϕ[t/u]#

Proof. We can then define a function hSubst by primitive recursion as follows:

hSubst(x, y, z, 0) = Λ

hSubst(x, y, z, i+ 1) ={
hSubst(x, y, z, i) _ y if FreeOcc(x, z, i+ 1)

append(hSubst(x, y, z, i), (x)i+1) otherwise.

Subst(x, y, z) can now be defined as hSubst(x, y, z, len(x)).
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Proposition art.12. inc:art:sub:

prop:free-for

The relation FreeFor(x, y, z), which holds iff the term
with Gödel number y is free for the variable with Gödel number z in the formula
with Gödel number x, is primitive recursive.

Proof. Exercise.

Problem art.5. Prove Proposition art.12

art.6 Derivations in LK

inc:art:plk:
sec

explanation In order to arithmetize derivations, we must represent derivations as num-
bers. Since derivations are trees of sequents where each inference carries also a
label, a recursive representation is the most obvious approach: we represent a
derivation as a tuple, the components of which are the end-sequent, the label,
and the representations of the sub-derivations leading to the premises of the
last inference.

Definition art.13. If Γ is a finite sequence of sentences, Γ = 〈ϕ1, . . . , ϕn〉,
then #Γ# = 〈 #ϕ1

#, . . . , #ϕn
#〉.

If Γ ⇒ ∆ is a sequent, then a Gödel number of Γ ⇒ ∆ is

#Γ ⇒ ∆# = 〈 #Γ#, #∆#〉

If π is a derivation in LK, then #π# is

1. 〈0, #Γ ⇒ ∆#〉 if π consists only of the initial sequent Γ ⇒ ∆.

2. 〈1, #Γ ⇒ ∆#, k, #π′#〉 if π ends in an inference with one premise, k is
given by the following table according to which rule was used in the last
inference, and π′ is the immediate subproof ending in the premise of the
last inference.

Rule: WL WR CL CR XL XR
k: 1 2 3 4 5 6

Rule: ¬L ¬R ∧L ∨R →R
k: 7 8 9 10 11

Rule: ∀L ∀R ∃L ∃R =
k: 12 13 14 15 16

3. 〈2, #Γ ⇒ ∆#, k, #π′#, #π′′#〉 if π ends in an inference with two premises,
k is given by the following table according to which rule was used in the
last inference, and π′, π′′ are the immediate subproof ending in the left
and right premise of the last inference, respectively.

Rule: Cut ∧R ∨L →L
k: 1 2 3 4
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explanationHaving settled on a representation of derivations, we must also show that
we can manipulate such derivations primitive recursively, and express their
essential properties and relations so. Some operations are simple: e.g., given
a Gödel number d of a derivation, (s)1 gives us the Gödel number of its end-
sequent. Some are much harder. We’ll at least sketch how to do this. The
goal is to show that the relation “π is a derivation of ϕ from Γ” is a primitive
recursive relation of the Gödel numbers of π and ϕ.

Proposition art.14.inc:art:plk:

prop:followsby

The following relations are primitive recursive:

1. Γ ⇒ ∆ is an initial sequent.

2. Γ ⇒ ∆ follows from Γ ′ ⇒ ∆′ (and Γ ′′ ⇒ ∆′′) by a rule of LK.

3. π is a correct LK-derivation.

Proof. We have to show that the corresponding relations between Gödel num-
bers of formulas, sequences of Gödel numbers of formulas (which code sequences
of formulas), and Gödel numbers of sequents, are primitive recursive.

1. Γ ⇒ ∆ is an initial sequent if either there is a sentence ϕ such that
Γ ⇒ ∆ is ϕ⇒ ϕ, or there is a term t such that Γ ⇒ ∆ is ∅ ⇒ t = t. In
terms of Gödel numbers, InitSeq(s) holds iff

(∃x < s) (Sent(x) ∧ s = 〈〈x〉, 〈x〉〉) ∨
(∃t < s) (Term(t) ∧ s = 〈0, 〈 #=(# _ t _ #,# _ t _ #)#〉〉).

2. Here we have to show that for each rule of inference R the relation
FollowsByR(s, s′) which holds if s and s′ are the Gödel numbers of con-
clusion and premise of a correct application of R is primitive recursive.
If R has two premises, FollowsByR of course has three arguments.

For instance, Γ ⇒ ∆ follows correctly from Γ ′ ⇒ ∆′ by ∃R iff Γ = Γ ′

and there is a sequence of formulas ∆′′, a formula ϕ, a variable x and a
closed term t such that ∆′ = ∆′′, ϕ[t/x] and ∆ = ∆′′,∃xϕ. We just have
to translate this into Gödel numbers. If s = #Γ ⇒ ∆# then (s)0 = #Γ#

and (s)1 = #∆#. So, FollowsBy∃R(s, s′) holds iff

(s)0 = (s′)0 ∧
(∃d < s) (∃f < s) (∃x < s) (∃t < s′) (Frm(f) ∧Var(y) ∧ Term(t) ∧

(s′)1 = d _ 〈Subst(f, t, x)〉 ∧
(s)1 = d _ 〈#(∃) _ y _ f〉

The individual lines express, respectively, “Γ = Γ ,” “there is a se-
quence (∆′′) with Gödel number d, a formula (ϕ) with Gödel number f ,
a variable with Gödel number x, and a term with Gödel number t,”
“∆′ = ∆′′, ϕ[t/x],” and “∆ = ∆′′,∃xϕ”. (Remember that #∆# is the
number of a sequence of Gödel numbers of formulas in ∆.)
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3. We first define a helper relation hDeriv(s, n) which holds if s codes a
correct derivation to at least n inferences up from the end sequent. If n =
0 we let the relation be satisfied by default. Otherwise, hDeriv(s, n+1) iff
either s consists just of an initial sequent, or it ends in a correct inference
and the codes of the immediate subderivations satisfy hDeriv(s, n).

hDeriv(s, 0)⇔ true

hDeriv(s, n+ 1)⇔
((s)0 = 0 ∧ InitialSeq((s)1)) ∨
((s)0 = 1 ∧

((s)2 = 1 ∧ FollowsByCL((s)1, ((s)3)1)) ∨
...

((s)2 = 16 ∧ FollowsBy=((s)1, ((s)3)1)) ∧
hDeriv((s)3, n)) ∨

((s)0 = 2 ∧
((s)2 = 1 ∧ FollowsByCut((s)1, ((s)3)1), ((s)4)1)) ∨
...

((s)2 = 4 ∧ FollowsBy→L((s)1, ((s)3)1), ((s)4)1)) ∧
hDeriv((s)3, n) ∧ hDeriv((s)4, n))

This is a primitive recursive definition. If the number n is large enough,
e.g., larger than the maximum number of inferences between an initial
sequent and the end sequent in s, it holds of s iff s is the Gödel number
of a correct derivation. The number s itself is larger than that maximum
number of inferences. So we can now define Deriv(s) by hDeriv(s, s).

Problem art.6. Define the following relations as in Proposition art.14:

1. FollowsBy∧R(s, s′, s′′),

2. FollowsBy=(s, s′),

3. FollowsBy∀R(s, s′).

Proposition art.15. Suppose Γ is a primitive recursive set of sentences. Then
the relation PrfΓ (x, y) expressing “x is the code of a derivation π of Γ0 ⇒ ϕ
for some finite Γ0 ⊆ Γ and x is the Gödel number of ϕ” is primitive recursive.

Proof. Suppose “y ∈ Γ” is given by the primitive recursive predicate RΓ (y).
We have to show that PrfΓ (x, y) which holds iff y is the Gödel number of a
sentence ϕ and x is the code of an LK-derivation with end sequent Γ0 ⇒ ϕ is
primitive recursive.
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By the previous proposition, the property Deriv(x) which holds iff x is the
code of a correct derivation π in LK is primitive recursive. If x is such a code,
then (x)1 is the code of the end sequent of π, and so ((x)1)0 is the code of the
left side of the end sequent and ((x)1)1 the right side. So we can express “the
right side of the end sequent of π is ϕ” as len(((x)1)1) = 1 ∧ (((x)1)1)0 = x.
The left side of the end sequent of π is of course automatically finite, we just
have to express that every sentence in it is in Γ . Thus we can define PrfΓ (x, y)
by

PrfΓ (x, y)⇔ Sent(y) ∧Deriv(x) ∧
(∀i < len(((x)1)0)) RΓ ((((x)1)0)i) ∧
len(((x)1)1) = 1 ∧ (((x)1)1)0 = x

art.7 Derivations in Natural Deduction

inc:art:pnd:
sec

explanationIn order to arithmetize derivations, we must represent derivations as num-
bers. Since derivations are trees of formulas where each inference carries one or
two labels, a recursive representation is the most obvious approach: we repre-
sent a derivation as a tuple, the components of which are the end-formula, the
labels, and the representations of the sub-derivations leading to the premises
of the last inference.

Definition art.16. If δ is a derivation in natural deduction, then #δ# is

1. 〈0, #ϕ#, n〉 if δ consists only of the assumption ϕ. The number n is 0 if
it is an undischarged assumption, and the numerical label otherwise.

2. 〈1, #ϕ#, n, k, #δ1
#〉 if δ ends in an inference with one premise, k is given

by the following table according to which rule was used in the last infer-
ence, and δ1 is the immediate subproof ending in the premise of the last
inference. n is the label of the inference, or 0 if the inference does not
discharge any assumptions.

Rule: ∧Elim ∨Intro →Intro ¬Intro ⊥I
k: 1 2 3 4 5

Rule: ⊥C ∀Intro ∀Elim ∃Intro =Intro
k: 6 7 8 9 10

3. 〈2, #ϕ#, n, k, #δ1
#, #δ2

#〉 if δ ends in an inference with two premises, k is
given by the following table according to which rule was used in the last
inference, and δ1, δ2 are the immediate subderivations ending in the left
and right premise of the last inference, respectively. n is the label of the
inference, or 0 if the inference does not discharge any assumptions.

Rule: ∧Intro →Elim ¬Elim
k: 1 2 3
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4. 〈3, #ϕ#, n, #δ1
#, #δ2

#, #δ3
#〉 if δ ends in an ∨Elim inference. δ1, δ2, δ3

are the immediate subderivations ending in the left, middle, and right
premise of the last inference, respectively, and n is the label of the infer-
ence.

Example art.17. Consider the very simple derivation

[(ϕ ∧ ψ)]1
∧Elimϕ

1 →Intro
(ϕ→ ψ)

The Gödel number of the assumption would be d0 = 〈0, #(ϕ ∧ ψ)#, 1〉. The
Gödel number of the derivation ending in the conclusion of ∧Elim would be
d1 = 〈1, #ϕ#, 0, 1, d0〉 (1 since ∧Elim has one premise, Gödel number of conclu-
sion ϕ, 0 because no assumption is discharged, 1 is the number coding ∧Elim).
The Gödel number of the entire derivation then is 〈1, #(ϕ→ ψ)#, 1, 3, d1〉, i.e.,

22 · 3
#(ϕ→ψ)#+1 · 52 · 74 · 11(2

2·3
#ϕ#+1·51·72·11(2

1·3
#(ϕ∧ψ)#+1·52)).

explanation Having settled on a representation of derivations, we must also show that
we can manipulate such derivations primitive recursively, and express their
essential properties and relations so. Some operations are simple: e.g., given
a Gödel number d of a derivation, (d)1 gives us the Gödel number of its end-
formula. Some are much harder. We’ll at least sketch how to do this. The
goal is to show that the relation “δ is a derivation of ϕ from Γ” is primitive
recursive on the Gödel numbers of δ and ϕ.

Proposition art.18. inc:art:pnd:

prop:followsby

The following relations are primitive recursive:

1. ϕ occurs as an assumption in δ with label n.

2. All assumption in δ with label n are of the form ϕ (i.e., we can discharge
the assumption ϕ using label n in δ).

3. ϕ is an undischarged assumption of δ.

4. An inference with conclusion ϕ, upper derivations δ1 (and δ2, δ3), and
discharge label n is correct.

5. δ is a correct natural deduction derivation.

Proof. We have to show that the corresponding relations between Gödel num-
bers of formulas, sequences of Gödel numbers of formulas (which code sets of
formulas), and Gödel numbers of derivations are primitive recursive.

1. We want to show that Assum(x, d, n), which holds if x is the Gödel num-
ber of an assumption of the derivation with Gödel number d labelled n, is
primitive recursive. For this we need a helper relation hAssum(x, d, n, i)
which holds if the formula ϕ with Gödel number x occurs as an initial
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formula with label n in the derivation with Gödel number d within i
inferences up from the end-formula.

hAssum(x, d, n, 0)⇔ T
hAssum(x, d, n, i+ 1)⇔

Sent(x) ∧ (d = 〈0, x, n〉 ∨
((d)0 = 1 ∧ hAssum(x, (d)4, n, i)) ∨
((d)0 = 2 ∧ (hAssum(x, (d)4, n, i) ∨

hAssum(x, (d)5, n, i))) ∨
((d)0 = 3 ∧ (hAssum(x, (d)3, n, i) ∨

hAssum(x, (d)2, n, i)) ∨ hAssum(x, (d)3, n, i))

If the number i is large enough, e.g., larger than the maximum number
of inferences between an initial formula and the end-formula of δ, it holds
of x, d, n, and i iff ϕ is an initial formula in δ labelled n. The number d
itself is larger than that maximum number of inferences. So we can define

Assum(x, d, n) = hAssum(x, d, n, d).

2. We want to show that Discharge(x, d, n), which holds if all assumptions
with label n in the derivation with Gödel number d all are the formula
with Gödel number x. But this relation holds iff (∀y < d) (Assum(y, d, n)→
y = x).

3. An occurrence of an assumption is not open if it occurs with label n in
a subderivation that ends in a rule with discharge label n. Define the
helper relation hNotOpen(x, d, n, i) as

hNotOpen(x, d, n, 0)⇔ T
hNotOpen(x, d, n, i+ 1)⇔

(d)2 = n ∨
((d)0 = 1 ∧ hNotOpen(x, (d)4, n, i)) ∨
((d)0 = 2 ∧ hNotOpen(x, (d)4, n, i) ∧

hNotOpen(x, (d)5, n, i))) ∨
((d)0 = 3 ∧ hNotOpen(x, (d)3, n, i) ∧

hNotOpen(x, (d)4, n, i) ∧ hNotOpen(x, (d)5, n, i))

Note that all assumptions of the form ϕ labelled n are discharged in δ iff
either the last inference of δ discharges them (i.e., the last inference has
label n), or if it is discharged in all of the immediate subderivations.

A formula ϕ is an open assumption of δ iff it is an initial formula of δ
(with label n) and is not discharged in δ (by a rule with label n). We can
then define OpenAssum(x, d) as

(∃n < d) (Assum(x, d, n, d) ∧ ¬hNotOpen(x, d, n, d)).
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4. Here we have to show that for each rule of inference R the relation
FollowsByR(x, d1, n) which holds if x is the Gödel number of the con-
clusion and d1 is the Gödel number of a derivation ending in the premise
of a correct application of R with label n is primitive recursive, and sim-
ilarly for rules with two or three premises.

The simplest case is that of the =Intro rule. Here there is no premise,
i.e., d1 = 0. However, ϕ must be of the form t = t, for a closed term t.
Here, a primitive recursive definition is

(∃t < x) (ClTerm(t) ∧ x = ( #=(# _ t _ #,# _ t _ #)#)) ∧ d1 = 0).

For a more complicated example, FollowsBy→Intro(x, d1, n) holds iff ϕ is
of the form (ψ→ χ), the end-formula of δ is χ, and any initial formula
in δ labelled n is of the form ψ. We can express this primitive recursively
by

(∃y < x) (Sent(y) ∧Discharge(y, d1) ∧
(∃z < x) (Sent(y) ∧ (d)1 = z) ∧

x = ( #(# _ y _ #→# _ z _ #)#))

(Think of y as the Gödel number of ψ and z as that of χ.)

For another example, consider ∃Intro. Here, ϕ is the conclusion of a
correct inference with one upper derivation iff there is a formula ψ, a
closed term t and a variable x such that ψ[t/x] is the end-formula of
the upper derivation and ∃xψ is the conclusion ϕ, i.e., the formula with
Gödel number x. So FollowsBy∃Intro(x, d1, n) holds iff

Sent(x) ∧ (∃y < x) (∃v < x) (∃t < d) (Frm(y) ∧ Term(t) ∧Var(v) ∧
FreeFor(y, t, v) ∧ Subst(y, t, v) = (d1)1 ∧ x = ( #∃# _ v _ z))

5. We first define a helper relation hDeriv(d, i) which holds if d codes a cor-
rect derivation at least to i inferences up from the end sequent. hDeriv(d, 0)
holds always. Otherwise, hDeriv(d, i + 1) iff either d just codes an as-
sumption or d ends in a correct inference and the codes of the immediate
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sub-derivations satisfy hDeriv(d′, i).

hDeriv(d, 0)⇔ T
hDeriv(d, i+ 1)⇔

(∃x < d) (∃n < d) (Sent(x) ∧ d = 〈0, x, n〉) ∨
((d)0 = 1 ∧

((d)3 = 1 ∧ FollowsBy∧Elim((d)1, (d)4, (d)2) ∨
...

((d)3 = 10 ∧ FollowsBy=Intro((d)1, (d)4, (d)2)) ∧
nDeriv((d)4, i)) ∨

((d)0 = 2 ∧
((d)3 = 1 ∧ FollowsBy∧Intro((d)1, (d)4, (d)5, (d)2)) ∨
...

((d)3 = 3 ∧ FollowsBy¬Elim((d)1, (d)4, (d)5, (d)2)) ∧
hDeriv((d)4, i) ∧ hDeriv((d)5, i)) ∨

((d)0 = 3 ∧
FollowsBy∨Elim((d)1, (d)3, (d)4, (d)5, (d)2) ∧
hDeriv((d)3, i) ∧ hDeriv((d)4, i)) ∧ hDeriv((d)5, i)

This is a primitive recursive definition. Again we can define Deriv(d) as
hDeriv(d, d).

Problem art.7. Define the following relations as in Proposition art.18:

1. FollowsBy→Elim(x, d1, d2, n),

2. FollowsBy=Elim(x, d1, d2, n),

3. FollowsBy∨Elim(x, d1, d2, d3, n),

4. FollowsBy∀Intro(x, d1, n).

For the last one, you will have to also show that you can test primitive re-
cursively if the formula with Gödel number x and the derivation with Gödel
number d satisfy the eigenvariable condition, i.e., the eigenvariable a of the
∀Intro inference occurs neither in x nor in an open assumption of d.

Proposition art.19. Suppose Γ is a primitive recursive set of sentences. Then
the relation PrfΓ (x, y) expressing “x is the code of a derivation δ of ϕ from
undischarged assumptions in Γ and y is the Gödel number of ϕ” is primitive
recursive.
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Proof. Suppose “y ∈ Γ” is given by the primitive recursive predicate RΓ (y).
We have to show that PrfΓ (x, y) which holds iff y is the Gödel number of
a sentence ϕ and x is the code of a natural deduction derivation with end
formula ϕ and all undischarged assumptions in Γ is primitive recursive.

By the previous proposition, the property Deriv(x) which holds iff x is the
code of a correct derivation δ in natural deduction is primitive recursive. If x is
such a code, then (x)1 is the code of the end-formula of δ. Thus we can define
PrfΓ (x, y) by

PrfΓ (x, y)⇔ Deriv(x) ∧ (x)1 = y ∧
(∀z < x) (OpenAssum(z, x)→RΓ (z))

art.8 Axiomatic Derivations

inc:art:pax:
sec

explanation In order to arithmetize axiomatic derivations, we must represent derivations
as numbers. Since derivations are simply sequences of formulas, the obvious
approach is to code every derivation as the code of the sequence of codes of
formulas in it.

Definition art.20. If δ is an axiomatic derivation consisting of formulas ϕ1,
. . . , ϕn, then #δ# is

〈 #ϕ1
#, . . . , #ϕn

#〉.

Example art.21. Consider the very simple derivation

1. ψ→ (ψ ∨ ϕ)
2. (ψ→ (ψ ∨ ϕ))→ (ϕ→ (ψ→ (ψ ∨ ϕ)))
3. ϕ→ (ψ→ (ψ ∨ ϕ))

The Gödel number of this derivation would simply be

〈 #ψ→ (ψ ∨ ϕ)#, #(ψ→ (ψ ∨ ϕ))→ (ϕ→ (ψ→ (ψ ∨ ϕ)))#, #ϕ→ (ψ→ (ψ ∨ ϕ))#〉.

explanation Having settled on a representation of derivations, we must also show that
we can manipulate such derivations primitive recursively, and express their
essential properties and relations so. Some operations are simple: e.g., given
a Gödel number d of a derivation, (d)len(d)−1 gives us the Gödel number of its
end-formula. Some are much harder. We’ll at least sketch how to do this. The
goal is to show that the relation “δ is a derivation of ϕ from Γ” is primitive
recursive on the Gödel numbers of δ and ϕ.

Proposition art.22. inc:art:pax:

prop:followsby

The following relations are primitive recursive:

1. ϕ is an axiom.

2. The ith line in δ is justified by modus ponens
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3. The ith line in δ is justified by qr.

4. δ is a correct derivation.

Proof. We have to show that the corresponding relations between Gödel num-
bers of formulas and Gödel numbers of derivations are primitive recursive.

1. We have a given list of axiom schemas, and ϕ is an axiom if it is of the
form given by one of these schemas. Since the list of schemas is finite,
it suffices to show that we can test primitive recursively, for each axiom
schema, if ϕ is of that form. For instance, consider the axiom schema

ψ→ (χ→ ψ).

ϕ is an instance of this axiom schema if there are formulas ψ and χ such
that we obtain ϕ when we concatenate ( with ψ with → with ( with χ
with → with ψ and with )). We can test the corresponding property of
the Gödel number n of ϕ, since concatenation of sequences is primitive
recursive, and the Gödel numbers of ψ and C must be smaller than the
Gödel number of ϕ, since when the relation holds, both ψ and χ are
sub-formulas of ϕ. Hence, we can define

IsAxψ→(χ→ψ)(n)⇔ (∃b < n) (∃c < n) (Sent(b) ∧ Sent(c) ∧
n = #(# _ b _ #→# _ #(# _ c _ #→# _ b _ #))#).

If we have such a definition for each axiom schema, their disjunction
defines the property IsAx(n), “n is the Gödel number of an axiom.”

2. The ith line in δ is justified by modus ponens iff there are lines j and
k < i where the sentence on line j is some formula ϕ, the sentence on
line k is ϕ→ ψ, and the sentence on line i is ψ.

MP(d, i)⇔ (∃j < i) (∃k < i)

(d)k = #(# _ (d)j _
#→# _ (d)i _

#)#

Since bounded quantification, concatenation, and = are primitive recur-
sive, this defines a primitive recursive relation.

3. A line in δ is justified by qr if it is of the form ψ→∀xϕ(x), a preceding
line is ψ→ ϕ(c) for some constant symbol c, and c does on occur in ψ.
This is the case iff

a) there is a sentence ψ and

b) a formula ϕ(x) with a single variable x free so that

c) line i contains ψ→∀xϕ(x)

d) some line j < i contains ψ→ ϕ[c/x] for a constant c

e) which does not occur in ψ.
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All of these can be tested primitive recursively, since the Gödel numbers
of ψ, ϕ(x), and x are less than the Gödel number of the formula on line i,
and that of a less than the Gödel number of the formula on line j:

QR1(d, i)⇔ (∃b < (d)i) (∃x < (d)i) (∃a < (d)i) (∃c < (d)j) (

Var(x) ∧ Const(c) ∧
(d)i = #(# _ b _ #→# _ #∀# _ x _ a _ #)# ∧
(d)j = #(# _ b _ #→# _ Subst(a, c, x) _ #)# ∧

Sent(b) ∧ Sent(Subst(a, c, x)) ∧ (∀k < len(b)) (b)k 6= (c)0)

Here we assume that c and x are the Gödel numbers of the variable and
constant considered as terms (i.e., not their symbol codes). We test that
x is the only free variable of ϕ(x) by testing if ϕ(x)[c/x] is a sentence,
and ensure that c does not occur in ψ by requiring that every symbol
of ψ is different from c.

We leave the other version of qr as an exercise.

4. d is the Gödel number of a correct derivation iff every line in it is an
axiom, or justified by modus ponens or qr. Hence:

Deriv(d)⇔ (∀i < len(d)) (IsAx((d)i) ∨MP(d, i) ∨QR(d, i))

Problem art.8. Define the following relations as in Proposition art.22:

1. IsAxϕ→(ψ→(ϕ∧ψ))(n),

2. IsAx∀xϕ(x)→ϕ(t)(n),

3. QR2(d, i) (for the other version of qr).

Proposition art.23. Suppose Γ is a primitive recursive set of sentences. Then
the relation PrfΓ (x, y) expressing “x is the code of a derivation δ of ϕ from Γ
and y is the Gödel number of ϕ” is primitive recursive.

Proof. Suppose “y ∈ Γ” is given by the primitive recursive predicate RΓ (y).
We have to show that the relation PrfΓ (x, y) is primitive recursive, where
PrfΓ (x, y) holds iff y is the Gödel number of a sentence ϕ and x is the code of
a derivation of ϕ from Γ .

By the previous proposition, the property Deriv(x) which holds iff x is the
code of a correct derivation δ is primitive recursive. However, that definition
did not take into account the set Γ as an additional way to justify lines in the
derivation. Our primitive recursive test of whether a line is justified by qr also
left out of consideration the requirement that the constant c is not allowed to
occur in Γ . It is possible to amend our definition so that it takes into account Γ
directly, but it is easier to use Deriv and the deduction theorem. Γ ` ϕ iff there
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is some finite list of sentences ψ1, . . . , ψn ∈ Γ such that {ψ1, . . . , ψn} ` ϕ. And
by the deduction theorem, this is the case if ` (ψ1→ (ψ2→ · · · (ψn→ ϕ) · · · )).
Whether a sentence with Gödel number z is of this form can be tested primitive
recursively. So, instead of considering x as the Gödel number of a derivation of
the sentence with Gödel number y from Γ , we consider x as the Gödel number
of a derivation of a nested conditional of the above form from ∅.

First, if we have a sequence of sentences, we can primitive recursively form
the conditional with all these sentences as antecedents and given sentence as
consequent:

hCond(s, y, 0) = y

hCond(s, y, n+ 1) = #(# _ (s)n _
#→# _ Cond(s, y, n) _ #)#

Cond(s, y) = hCond(s, y, len(s))

So we can define PrfΓ (x, y) by

PrfΓ (x, y)⇔ (∃s < sequenceBound(x, x)) (

(x)len(x)−1 = Cond(s, y) ∧
(∀i < len(s)) (s)i ∈ Γ ∧
Deriv(x)).

The bound on s is given by considering that each (s)i is the Gödel number of
a subformula of the last line of the derivation, i.e., is less than (x)len(x)−1. The
number of antecedents ψ ∈ Γ , i.e., the length of s, is less than the length of
the last line of x.
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