set.1 Cantor on the Line and the Plane

Some of the circumstances surrounding the proof of Schröder-Bernstein tie in with the history we discussed in ???. Recall that, in 1877, Cantor proved that there are exactly as many points on a square as on one of its sides. Here, we will present his (first attempted) proof.

Let \(L \) be the unit line, i.e., the set of points \([0, 1]\). Let \(S \) be the unit square, i.e., the set of points \(L \times L \). In these terms, Cantor proved that \(L \approx S \). He wrote a note to Dedekind, essentially containing the following argument.

Theorem set.1. \(L \approx S \)

Proof: first part. Fix \(a, b \in L \). Write them in binary notation, so that we have infinite sequences of 0s and 1s, \(a_1, a_2, \ldots, \) and \(b_1, b_2, \ldots, \) such that:

\[
a = 0.a_1a_2a_3a_4\ldots \\
b = 0.b_1b_2b_3b_4\ldots
\]

Now consider the function \(f: S \to L \) given by

\[
f(a, b) = 0.a_1b_1a_2b_2a_3b_3a_4b_4\ldots
\]

Now \(f \) is an injection, since if \(f(a, b) = f(c, d) \), then \(a_n = c_n \) and \(b_n = d_n \) for all \(n \in \mathbb{N} \), so that \(a = c \) and \(b = d \).

Unfortunately, as Dedekind pointed out to Cantor, this does not answer the original question. Consider \(0.\dot{1}\dot{0} = 0.1010010010\ldots \). We need that \(f(a, b) = 0.\dot{1}\dot{0} \), where:

\[
a = 0.\dot{1}\dot{1} = 0.111111\ldots \\
b = 0
\]

But \(a = 0.\dot{1}\dot{1} = 1 \). So, when we say “write \(a \) and \(b \) in binary notation”, we have to choose which notation to use; and, since \(f \) is to be a function, we can use only one of the two possible notations. But if, for example, we use the simple notation, and write \(a \) as “1.000\ldots”, then we have no pair \(\langle a, b \rangle \) such that \(f(a, b) = 0.\dot{1}\dot{0} \).

To summarise: Dedekind pointed out that, given the possibility of certain recurring decimal expansions, Cantor’s function \(f \) is an injection but not a surjection. So Cantor has shown only that \(S \preceq L \) and not that \(S \approx L \).

Cantor wrote back to Dedekind almost immediately, essentially suggesting that the proof could be completed as follows:

Proof: completed. So, we have shown that \(S \preceq L \). But there is obviously an injection from \(L \) to \(S \): just lay the line flat along one side of the square. So \(L \preceq S \) and \(S \preceq L \). By Schröder–Bernstein (??), \(L \approx S \).
But of course, Cantor could not complete the last line in these terms, for
the Schröder-Bernstein Theorem was not yet proved. Indeed, although Cantor
would subsequently formulate this as a general conjecture, it was not satisfac-
torily proved until 1897. (And so, later in 1877, Cantor offered a different proof
of Theorem set.1, which did not go via Schröder–Bernstein.)

Photo Credits

Bibliography