tab.1 Quantifier Rules

Rules for \forall

\[
\begin{array}{ccc}
\frac{T \forall x \varphi(x)}{T \varphi(t)} & \forall T & \\
\frac{F \forall x \varphi(x)}{F \varphi(a)} & \forall F
\end{array}
\]

In $\forall T$, t is a closed term (i.e., one without variables). In $\forall F$, a is a constant symbol which must not occur anywhere in the branch above the $\forall F$ rule. We call a the eigenvariable of the $\forall F$ inference.

Rules for \exists

\[
\begin{array}{ccc}
\frac{T \exists x \varphi(x)}{T \varphi(a)} & \exists T & \\
\frac{F \exists x \varphi(x)}{F \varphi(t)} & \exists F
\end{array}
\]

Again, t is a closed term, and a is a constant symbol which does not occur in the branch above the $\exists F$ rule. We call a the eigenvariable of the $\exists F$ inference.

The condition that an eigenvariable not occur in the branch above the $\forall F$ or $\exists T$ inference is called the eigenvariable condition.

We use the term “eigenvariable” even though a in the above rules is a constant symbol. This has historical reasons.

In $\forall T$ and $\exists F$ there are no restrictions on the term t. On the other hand, in the $\exists T$ and $\forall F$ rules, the eigenvariable condition requires that the constant symbol a does not occur anywhere in the branches above the respective inference.

It is necessary to ensure that the system is sound. Without this condition, the following would be a closed tableau for $\exists x \varphi(x) \to \forall x \varphi(x)$:

1. $F \exists x \varphi(x) \to \forall x \varphi(x)$ Assumption
2. $T \exists x \varphi(x) \to F 1$
3. $F \forall x \varphi(x) \to F 1$
4. $T \varphi(a) \exists T 2$
5. $F \varphi(a) \forall F 3$

However, $\exists x \varphi(x) \to \forall x \varphi(x)$ is not valid.