

tab.1 Quantifier Rules

Rules for \(\forall \)

<table>
<thead>
<tr>
<th>(\frac{T \forall x \varphi(x)}{T \varphi(t)}) (\forall T)</th>
<th>(\frac{F \forall x \varphi(x)}{F \varphi(a)}) (\forall F)</th>
</tr>
</thead>
</table>

In \(\forall T \), \(t \) is a closed term (i.e., one without variables). In \(\forall F \), \(a \) is a constant symbol which must not occur anywhere in the branch above \(\forall F \) rule. We call \(a \) the eigenvariable of the \(\forall F \) inference.

Rules for \(\exists \)

<table>
<thead>
<tr>
<th>(\frac{T \exists x \varphi(x)}{T \varphi(a)}) (\exists T)</th>
<th>(\frac{F \exists x \varphi(x)}{F \varphi(t)}) (\exists F)</th>
</tr>
</thead>
</table>

Again, \(t \) is a closed term, and \(a \) is a constant symbol which does not occur in the branch above the \(\exists F \) rule. We call \(a \) the eigenvariable of the \(\exists F \) inference.

We use the term “eigenvariable” even though \(a \) in the above rules is a constant symbol. This has historical reasons.

In \(\forall T \) and \(\exists F \) there are no restrictions on the term \(t \). On the other hand, in the \(\exists T \) and \(\forall F \) rules, the eigenvariable condition requires that the constant symbol \(a \) does not occur anywhere in the branches above the respective inference. It is necessary to ensure that the system is sound. Without this condition, the following would be a closed tableau for \(\exists x \varphi(x) \rightarrow \forall x \varphi(x) \):

1. \(F \exists x \varphi(x) \rightarrow \forall x \varphi(x) \) Assumption
2. \(T \exists x \varphi(x) \rightarrow F 1 \)
3. \(F \forall x \varphi(x) \rightarrow F 1 \)
4. \(T \varphi(a) \rightarrow \exists T 2 \)
5. \(F \varphi(a) \rightarrow \forall F 3 \)

However, \(\exists x \varphi(x) \rightarrow \forall x \varphi(x) \) is not valid.
Photo Credits

Bibliography