tab.1 Tableaux with Identity predicate

fol:tab:ide: Tableaux with identity predicate require additional inference rules. The rules for = are $(t, t_1, and t_2 are closed terms)$:

$$\frac{\mathbb{T}t_1 = t_2}{\mathbb{T}t = t} = \frac{\mathbb{T}\varphi(t_1)}{\mathbb{T}\varphi(t_2)} = \mathbb{T} \qquad \frac{\mathbb{T}t_1 = t_2}{\mathbb{F}\varphi(t_1)} = \mathbb{F}$$

Note that in contrast to all the other rules, $=\mathbb{T}$ and $=\mathbb{F}$ require that *two* signed formulas already appear on the branch, namely both $\mathbb{T}t_1 = t_2$ and $S \varphi(t_1)$.

Example tab.1. If s and t are closed terms, then $s = t, \varphi(s) \vdash \varphi(t)$:

1.	$\mathbb{F} \varphi(t)$	Assumption
2.	$\mathbb{T} s = t$	Assumption
3.	$\mathbb{T} \varphi(s)$	Assumption
4.	$\mathbb{T} \varphi(t)$	$=\mathbb{T}2,3$
	\otimes	

This may be familiar as the principle of substitutability of identicals, or Leibniz' Law.

Tableaux prove that = is symmetric, i.e., that $s_1 = s_2 \vdash s_2 = s_1$:

1.	$\mathbb{F} s_2 = s_1$	Assumption
2.	$\mathbb{T}s_1 = s_2$	Assumption
3.	$\mathbb{T}s_1 = s_1$	=
4.	$\mathbb{T}s_2 = s_1$	$=\mathbb{T}2,3$
	\otimes	

Here, line 2 is the first prerequisite formula $\mathbb{T}s_1 = s_2$ of $=\mathbb{T}$. Line 3 is the second one, of the form $\mathbb{T}\varphi(s_2)$ —think of $\varphi(x)$ as $x = s_1$, then $\varphi(s_1)$ is $s_1 = s_1$ and $\varphi(s_2)$ is $s_2 = s_1$.

They also prove that = is transitive, i.e., that $s_1 = s_2, s_2 = s_3 \vdash s_1 = s_3$:

1.	$\mathbb{F} s_1 = s_3$	Assumption
2.	$\mathbb{T}s_1 = s_2$	Assumption
3.	$\mathbb{T}s_2 = s_3$	Assumption
4.	$\mathbb{T}s_1 = s_3$	$=\mathbb{T}3,2$
	\otimes	

In this tableau, the first prerequisite formula of $=\mathbb{T}$ is line 3, $\mathbb{T}s_2 = s_3$ (s_2 plays the role of t_1 , and s_3 the role of t_2). The second prerequisite, of the

identity rev: 016d2bc (2024-06-22) by OLP / CC-BY

form $\mathbb{T}\varphi(s_2)$ is line 2. Here, think of $\varphi(x)$ as $s_1 = x$; that makes $\varphi(s_2)$ into $t_1 = t_2$ (i.e., line 2) and $\varphi(s_3)$ into the formula $s_1 = s_3$ in the conclusion.

Problem tab.1. Give closed tableaux for the following:

1. $\mathbb{F} \forall x \forall y ((x = y \land \varphi(x)) \to \varphi(y))$

 $\begin{array}{l} 2. \hspace{0.2cm} \mathbb{F} \hspace{0.1cm} \exists x \, (\varphi(x) \wedge \forall y \, (\varphi(y) \rightarrow y = x)), \\ \mathbb{T} \hspace{0.1cm} \exists x \, \varphi(x) \wedge \forall y \, \forall z \, ((\varphi(y) \wedge \varphi(z)) \rightarrow y = z) \end{array}$

Photo Credits

Bibliography