tab.1 Tableaux with Identity predicate

fol:tab:ide:

Tableaux with identity predicate require additional inference rules. The rules for = are $(t, t_1, and t_2 are closed terms)$:

$$\frac{\mathbb{T}t_1 = t_2}{\mathbb{T}t = t} = \frac{\mathbb{T}t_1 = t_2}{\mathbb{T}\varphi(t_1)} = \mathbb{T} \frac{\mathbb{T}t_1 = t_2}{\mathbb{F}\varphi(t_1)} = \mathbb{T}$$

Note that in contrast to all the other rules, $=\mathbb{T}$ and $=\mathbb{F}$ require that two signed formulas already appear on the branch, namely both $\mathbb{T}t_1=t_2$ and $S\varphi(t_1)$.

Example tab.1. If s and t are closed terms, then $s = t, \varphi(s) \vdash \varphi(t)$:

- 1. $\mathbb{F}\,\varphi(t)$ Assumption
- $\mathbb{T}s = t$ Assumption
- $\mathbb{T}\varphi(s)$ Assumption 3.
- $\mathbb{T}\varphi(t)$ $=\mathbb{T}2,3$

This may be familiar as the principle of substitutability of identicals, or Leibniz'

Tableaux prove that = is symmetric:

- $\mathbb{F}\,t=s$ Assumption
- $\mathbb{T}s = t$ Assumption
- 3. $\mathbb{T} s = s$
- $\mathbb{T}\,t=s$ $=\mathbb{T}2,3$ 4.

Here, line 2 is the first prerequisite formula $\mathbb{T} s = t$ of $=\mathbb{T}$, and line 3 the second one, $\mathbb{T}\varphi(s)$ —think of $\varphi(x)$ as x=s, then $\varphi(s)$ is s=s and $\varphi(t)$ is t=s.

They also prove that = is transitive:

- $\mathbb{F}\,t_1=t_3$ Assumption
- Assumption
- Assumption
- $T t_1 = t_2$ $T t_2 = t_3$ $T t_1 = t_3$ $=\mathbb{T}3,2$

In this tableau, the first prerequisite formula of $=\mathbb{T}$ is line 3, $\mathbb{T}t_2=t_3$. The second one, $\mathbb{T}\varphi(t_2)$ is line 2. Think of $\varphi(x)$ as $t_1=x$; that makes $\varphi(t_2)$ into $t_1 = t_2$ and $\varphi(t_3)$ into $t_1 = t_3$.

Problem tab.1. Give closed tableaux for the following:

- 1. $\mathbb{F} \forall x \forall y ((x = y \land \varphi(x)) \rightarrow \varphi(y))$
- $\begin{aligned} 2. \ \ \mathbb{F} \, \exists x \, (\varphi(x) \wedge \forall y \, (\varphi(y) \to y = x)), \\ \mathbb{T} \, \exists x \, \varphi(x) \wedge \forall y \, \forall z \, ((\varphi(y) \wedge \varphi(z)) \to y = z) \end{aligned}$

Photo Credits

Bibliography