Chapter udf

Syntax and Semantics

syn.1 Introduction

In order to develop the theory and metatheory of first-order logic, we must first define the syntax and semantics of its expressions. The expressions of first-order logic are terms and formulas. Terms are formed from variables, constant symbols, and function symbols. Formulas, in turn, are formed from predicate symbols together with terms (these form the smallest, “atomic” formulas), and then from atomic formulas we can form more complex ones using logical connectives and quantifiers. There are many different ways to set down the formation rules; we give just one possible one. Other systems will choose different symbols, will select different sets of connectives as primitive, will use parentheses differently (or even not at all, as in the case of so-called Polish notation). What all approaches have in common, though, is that the formation rules define the set of terms and formulas inductively. If done properly, every expression can result essentially in only one way according to the formation rules. The inductive definition resulting in expressions that are uniquely readable means we can give meanings to these expressions using the same method—inductive definition.

Giving the meaning of expressions is the domain of semantics. The central concept in semantics is that of satisfaction in a structure. A structure gives meaning to the building blocks of the language: a domain is a non-empty set of objects. The quantifiers are interpreted as ranging over this domain, constant symbols are assigned elements in the domain, function symbols are assigned functions from the domain to itself, and predicate symbols are assigned relations on the domain. The domain together with assignments to the basic vocabulary constitutes a structure. Variables may appear in formulas, and in order to give a semantics, we also have to assign elements of the domain to them—this is a variable assignment. The satisfaction relation, finally, brings these together. A formula may be satisfied in a structure \mathcal{M} relative to a variable assignment s, written as $\mathcal{M}, s \models \varphi$. This relation is also defined by induction on the structure of φ, using the truth tables for the logical connectives.
to define, say, satisfaction of \(\varphi \land \psi \) in terms of satisfaction (or not) of \(\varphi \) and \(\psi \). It then turns out that the variable assignment is irrelevant if the formula \(\varphi \) is a sentence, i.e., has no free variables, and so we can talk of sentences being simply satisfied (or not) in structures.

On the basis of the satisfaction relation \(M \models \varphi \) for sentences we can then define the basic semantic notions of validity, entailment, and satisfiability. A sentence is valid, \(\models \varphi \), if every structure satisfies it. It is entailed by a set of sentences, \(\Gamma \models \varphi \), if every structure that satisfies all the sentences in \(\Gamma \) also satisfies \(\varphi \). And a set of sentences is satisfiable if some structure satisfies all sentences in it at the same time. Because formulas are inductively defined, and satisfaction is in turn defined by induction on the structure of formulas, we can use induction to prove properties of our semantics and to relate the semantic notions defined.

syn.2 First-Order Languages

Expressions of first-order logic are built up from a basic vocabulary containing variables, constant symbols, predicate symbols and sometimes function symbols. From them, together with logical connectives, quantifiers, and punctuation symbols such as parentheses and commas, terms and formulas are formed. Informally, predicate symbols are names for properties and relations, constant symbols are names for individual objects, and function symbols are names for mappings. These, except for the identity predicate =, are the non-logical symbols and together make up a language. Any first-order language \(\mathcal{L} \) is determined by its non-logical symbols. In the most general case, \(\mathcal{L} \) contains infinitely many symbols of each kind.

In the general case, we make use of the following symbols in first-order logic:

1. **Logical symbols**

 a) Logical connectives: \(\neg \) (negation), \(\land \) (conjunction), \(\lor \) (disjunction), \(\rightarrow \) (conditional), \(\leftrightarrow \) (biconditional), \(\forall \) (universal quantifier), \(\exists \) (existential quantifier).

 b) The propositional constant for falsity \(\bot \).

 c) The propositional constant for truth \(\top \).

 d) The two-place identity predicate =.

 e) A denumerable set of variables: \(v_0, v_1, v_2, \ldots \).

2. **Non-logical symbols**, making up the standard language of first-order logic

 a) A denumerable set of \(n \)-place predicate symbols for each \(n > 0 \): \(A^n_0, A^n_1, A^n_2, \ldots \).

 b) A denumerable set of constant symbols: \(c_0, c_1, c_2, \ldots \).

 c) A denumerable set of \(n \)-place function symbols for each \(n > 0 \): \(f^n_0, f^n_1, f^n_2, \ldots \).
3. Punctuation marks: (,), and the comma.

Most of our definitions and results will be formulated for the full standard language of first-order logic. However, depending on the application, we may also restrict the language to only a few predicate symbols, constant symbols, and function symbols.

Example syn.1. The language L_A of arithmetic contains a single two-place predicate symbol $<$, a single constant symbol 0, one one-place function symbol $'$, and two two-place function symbols $+$ and \times.

Example syn.2. The language of set theory L_Z contains only the single two-place predicate symbol \in.

Example syn.3. The language of orders L_{\leq} contains only the two-place predicate symbol \leq.

Again, these are conventions: officially, these are just aliases, e.g., $<$, \in, and \leq are aliases for A_2^2, 0 for c_0, $'$ for f_1^1, $+$ for f_2^1, \times for f_2^2.

You may be familiar with different terminology and symbols than the ones we use above. Logic texts (and teachers) commonly use either \sim, \neg, and $!$ for “negation”, \land, \cdot, and $\&$ for “conjunction”. Commonly used symbols for the “conditional” or “implication” are \rightarrow, \Rightarrow, and \supset. Symbols for “biconditional,” “bi-implication,” or “(material) equivalence” are \leftrightarrow, \Leftrightarrow, and \equiv. The \bot symbol is variously called “falsity,” “falsum,” “absurdity,” or “bottom.” The \top symbol is variously called “truth,” “verum,” or “top.”

It is conventional to use lower case letters (e.g., a, b, c) from the beginning of the Latin alphabet for constant symbols (sometimes called names), and lower case letters from the end (e.g., x, y, z) for variables. Quantifiers combine with variables, e.g., x; notational variations include $\forall x$, $(\forall x)$, Πx, \bigwedge_x for the universal quantifier and $\exists x$, $(\exists x)$, $(\exists x)$, Σx, \bigvee_x for the existential quantifier.

We might treat all the propositional operators and both quantifiers as primitive symbols of the language. We might instead choose a smaller stock of primitive symbols and treat the other logical operators as defined. “Truth functionally complete” sets of Boolean operators include $\{\neg, \lor\}$, $\{\neg, \land\}$, and $\{\neg, \rightarrow\}$—these can be combined with either quantifier for an expressively complete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke $|$ (named after Henry Sheffer), and Peirce’s arrow \downarrow, also known as Quine’s dagger. When given their usual readings of “nand” and “nor” (respectively), these operators are truth functionally complete by themselves.

syn.3 Terms and Formulas

Once a first-order language \mathcal{L} is given, we can define expressions built up from the basic vocabulary of \mathcal{L}. These include in particular *terms* and *formulas*.
Definition syn.4 (Terms). The set of terms $\text{Trm}(\mathcal{L})$ of \mathcal{L} is defined inductively by:

1. Every variable is a term.
2. Every constant symbol of \mathcal{L} is a term.
3. If f is an n-place function symbol and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.
4. Nothing else is a term.

A term containing no variables is a **closed term**.

Explanation
The constant symbols appear in our specification of the language and the terms as a separate category of symbols, but they could instead have been included as zero-place function symbols. We could then do without the second clause in the definition of terms. We just have to understand $f(t_1, \ldots, t_n)$ as just f by itself if $n = 0$.

Definition syn.5 (Formula). The set of formulas $\text{Frm}(\mathcal{L})$ of the language \mathcal{L} is defined inductively as follows:

1. \bot is an atomic formula.
2. \top is an atomic formula.
3. If R is an n-place predicate symbol of \mathcal{L} and t_1, \ldots, t_n are terms of \mathcal{L}, then $R(t_1, \ldots, t_n)$ is an atomic formula.
4. If t_1 and t_2 are terms of \mathcal{L}, then $= (t_1, t_2)$ is an atomic formula.
5. If φ is a formula, then $\neg \varphi$ is formula.
6. If φ and ψ are formulas, then $(\varphi \land \psi)$ is a formula.
7. If φ and ψ are formulas, then $(\varphi \lor \psi)$ is a formula.
8. If φ and ψ are formulas, then $(\varphi \rightarrow \psi)$ is a formula.
9. If φ and ψ are formulas, then $(\varphi \leftrightarrow \psi)$ is a formula.
10. If φ is a formula and x is a variable, then $\forall x \varphi$ is a formula.
11. If φ is a formula and x is a variable, then $\exists x \varphi$ is a formula.
12. Nothing else is a formula.
The definitions of the set of terms and that of formulas are inductive definitions. Essentially, we construct the set of formulas in infinitely many stages. In the initial stage, we pronounce all atomic formulas to be formulas; this corresponds to the first few cases of the definition, i.e., the cases for \top, \bot, $R(t_1, \ldots, t_n)$ and $=(t_1, t_2)$. “Atomic formula” thus means any formula of this form.

The other cases of the definition give rules for constructing new formulas out of formulas already constructed. At the second stage, we can use them to construct formulas out of atomic formulas. At the third stage, we construct new formulas from the atomic formulas and those obtained in the second stage, and so on. A formula is anything that is eventually constructed at such a stage, and nothing else.

By convention, we write $=$ between its arguments and leave out the parentheses: $t_1 = t_2$ is an abbreviation for $=(t_1, t_2)$. Moreover, $\neg=(t_1, t_2)$ is abbreviated as $t_1 \neq t_2$. When writing a formula $(\psi \ast \chi)$ constructed from ψ, χ using a two-place connective \ast, we will often leave out the outermost pair of parentheses and write simply $\psi \ast \chi$.

Some logic texts require that the variable x must occur in φ in order for $\exists x \varphi$ and $\forall x \varphi$ to count as formulas. Nothing bad happens if you don’t require this, and it makes things easier.

If we work in a language for a specific application, we will often write two-place predicate symbols and function symbols between the respective terms, e.g., $t_1 < t_2$ and $(t_1 + t_2)$ in the language of arithmetic and $t_1 \in t_2$ in the language of set theory. The successor function in the language of arithmetic is even written conventionally after its argument: t'. Officially, however, these are just conventional abbreviations for $A_2^0(t_1, t_2)$, $f_2^0(t_1, t_2)$, $A_2^0(t_1, t_2)$ and $f_1^0(t)$, respectively.

Definition syn.6 (Syntactic identity). The symbol \equiv expresses syntactic identity between strings of symbols, i.e., $\varphi \equiv \psi \text{ iff } \varphi$ and ψ are strings of symbols of the same length and which contain the same symbol in each place.

The \equiv symbol may be flanked by strings obtained by concatenation, e.g., $\varphi \equiv (\psi \lor \chi)$ means: the string of symbols φ is the same string as the one obtained by concatenating an opening parenthesis, the string ψ, the \lor symbol, the string χ, and a closing parenthesis, in this order. If this is the case, then we know that the first symbol of φ is an opening parenthesis, φ contains ψ as a substring (starting at the second symbol), that substring is followed by \lor, etc.

syn.4 Unique Readability

The way we defined formulas guarantees that every formula has a unique reading, i.e., there is essentially only one way of constructing it according to our formation rules for formulas and only one way of “interpreting” it. If this were not so, we would have ambiguous formulas, i.e., formulas that have more than one reading or interpretation—and that is clearly something we want to avoid.
But more importantly, without this property, most of the definitions and proofs we are going to give will not go through.

Perhaps the best way to make this clear is to see what would happen if we had given bad rules for forming formulas that would not guarantee unique readability. For instance, we could have forgotten the parentheses in the formation rules for connectives, e.g., we might have allowed this:

If \(\varphi \) and \(\psi \) are formulas, then so is \(\varphi \rightarrow \psi \).

Starting from an atomic formula \(\theta \), this would allow us to form \(\theta \rightarrow \theta \). From this, together with \(\theta \), we would get \(\theta \rightarrow \theta \rightarrow \theta \). But there are two ways to do this:

1. We take \(\theta \) to be \(\varphi \) and \(\theta \rightarrow \theta \) to be \(\psi \).
2. We take \(\varphi \) to be \(\theta \rightarrow \theta \) and \(\psi \) is \(\theta \).

Correspondingly, there are two ways to “read” the formula \(\theta \rightarrow \theta \rightarrow \theta \). It is of the form \(\psi \rightarrow \chi \) where \(\psi \) is \(\theta \) and \(\chi \) is \(\theta \rightarrow \theta \), but it is also of the form \(\psi \rightarrow \chi \) with \(\psi \) being \(\theta \rightarrow \theta \) and \(\chi \) being \(\theta \).

If this happens, our definitions will not always work. For instance, when we define the main operator of a formula, we say: in a formula of the form \(\psi \rightarrow \chi \), the main operator is the indicated occurrence of \(\rightarrow \). But if we can match the formula \(\theta \rightarrow \theta \rightarrow \theta \) with \(\psi \rightarrow \chi \) in the two different ways mentioned above, then in one case we get the first occurrence of \(\rightarrow \) as the main operator, and in the second case the second occurrence. But we intend the main operator to be a function of the formula, i.e., every formula must have exactly one main operator occurrence.

Lemma syn.7. The number of left and right parentheses in a formula \(\varphi \) are equal.

Proof. We prove this by induction on the way \(\varphi \) is constructed. This requires two things: (a) We have to prove first that all atomic formulas have the property in question (the induction basis). (b) Then we have to prove that when we construct new formulas out of given formulas, the new formulas have the property provided the old ones do.

Let \(l(\varphi) \) be the number of left parentheses, and \(r(\varphi) \) the number of right parentheses in \(\varphi \), and \(l(t) \) and \(r(t) \) similarly the number of left and right parentheses in a term \(t \). We leave the proof that for any term \(t \), \(l(t) = r(t) \) as an exercise.

1. \(\varphi \equiv \bot \): \(\varphi \) has 0 left and 0 right parentheses.
2. \(\varphi \equiv \top \): \(\varphi \) has 0 left and 0 right parentheses.
3. \(\varphi \equiv R(t_1, \ldots, t_n) \): \(l(\varphi) = 1 + l(t_1) + \cdots + l(t_n) = 1 + r(t_1) + \cdots + r(t_n) = r(\varphi) \). Here we make use of the fact, left as an exercise, that \(l(t) = r(t) \) for any term \(t \).
4. $\varphi \equiv t_1 = t_2$: $l(\varphi) = l(t_1) + l(t_2) = r(t_1) + r(t_2) = r(\varphi)$.

5. $\varphi \equiv \neg \psi$: By induction hypothesis, $l(\psi) = r(\psi)$. Thus $l(\varphi) = l(\psi) = r(\psi) = r(\varphi)$.

6. $\varphi \equiv (\psi \chi)$: By induction hypothesis, $l(\psi) = r(\psi)$ and $l(\chi) = r(\chi)$. Thus $l(\varphi) = 1 + l(\psi) + l(\chi) = 1 + r(\psi) + r(\chi) = r(\varphi)$.

7. $\varphi \equiv \forall x \psi$: By induction hypothesis, $l(\psi) = r(\psi)$. Thus, $l(\varphi) = l(\psi) = r(\psi) = r(\varphi)$.

8. $\varphi \equiv \exists x \psi$: Similarly.

Definition syn.8 (Proper prefix). A string of symbols ψ is a proper prefix of a string of symbols φ if concatenating ψ and a non-empty string of symbols yields φ.

Lemma syn.9. If φ is a formula, and ψ is a proper prefix of φ, then ψ is not a formula.

Proof. Exercise.

Problem syn.1. Prove Lemma syn.9.

Proposition syn.10. If φ is an atomic formula, then it satisfies one, and only one of the following conditions.

1. $\varphi \equiv \bot$.
2. $\varphi \equiv \top$.
3. $\varphi \equiv R(t_1, \ldots, t_n)$ where R is an n-place predicate symbol, t_1, \ldots, t_n are terms, and each of R, t_1, \ldots, t_n is uniquely determined.
4. $\varphi \equiv t_1 = t_2$ where t_1 and t_2 are uniquely determined terms.

Proof. Exercise.

Problem syn.2. Prove Proposition syn.10 (Hint: Formulate and prove a version of Lemma syn.9 for terms.)

Proposition syn.11 (Unique Readability). Every formula satisfies one, and only one of the following conditions.

1. φ is atomic.
2. φ is of the form $\neg \psi$.
3. φ is of the form $(\psi \chi)$.
4. φ is of the form $(\psi \vee \chi)$.
5. \(\varphi \) is of the form \((\psi \rightarrow \chi)\).

6. \(\varphi \) is of the form \((\psi \leftrightarrow \chi)\).

7. \(\varphi \) is of the form \(\forall x \psi\).

8. \(\varphi \) is of the form \(\exists x \psi\).

Moreover, in each case \(\psi\), or \(\psi\) and \(\chi\), are uniquely determined. This means that, e.g., there are no different pairs \(\psi\), \(\chi\) and \(\psi', \chi'\) so that \(\varphi\) is both of the form \((\psi \rightarrow \chi)\) and \((\psi' \rightarrow \chi')\).

Proof. The formation rules require that if a formula is not atomic, it must start with an opening parenthesis (, \(\neg\), or with a quantifier. On the other hand, every formula that start with one of the following symbols must be atomic: a predicate symbol, a function symbol, a constant symbol, \(\bot\), \(\top\).

So we really only have to show that if \(\varphi\) is of the form \((\psi \ast \chi)\) and also of the form \((\psi' \ast' \chi')\), then \(\psi \equiv \psi'\), \(\chi \equiv \chi'\), and \(\ast \equiv \ast'\).

So suppose both \(\varphi \equiv (\psi \ast \chi)\) and \(\varphi \equiv (\psi' \ast' \chi')\). Then either \(\psi \equiv \psi'\) or not. If it is, clearly \(\ast \equiv \ast'\) and \(\chi \equiv \chi'\), since they then are substrings of \(\varphi\) that begin in the same place and are of the same length. The other case is \(\psi \not\equiv \psi'\). Since \(\psi\) and \(\psi'\) are both substrings of \(\varphi\) that begin at the same place, one must be a proper prefix of the other. But this is impossible by Lemma syn.9. \(\square\)

syn.5 Main operator of a Formula

It is often useful to talk about the last operator used in constructing a formula \(\varphi\). This operator is called the main operator of \(\varphi\). Intuitively, it is the “outermost” operator of \(\varphi\). For example, the main operator of \(\neg \varphi\) is \(\neg\), the main operator of \((\varphi \lor \psi)\) is \(\lor\), etc.

Definition syn.12 (Main operator). The main operator of a formula \(\varphi\) is defined as follows:

1. \(\varphi\) is atomic: \(\varphi\) has no main operator.
2. \(\varphi \equiv \neg \psi\): the main operator of \(\varphi\) is \(\neg\).
3. \(\varphi \equiv (\psi \land \chi)\): the main operator of \(\varphi\) is \(\land\).
4. \(\varphi \equiv (\psi \lor \chi)\): the main operator of \(\varphi\) is \(\lor\).
5. \(\varphi \equiv (\psi \rightarrow \chi)\): the main operator of \(\varphi\) is \(\rightarrow\).
6. \(\varphi \equiv (\psi \leftrightarrow \chi)\): the main operator of \(\varphi\) is \(\leftrightarrow\).
7. \(\varphi \equiv \forall x \psi\): the main operator of \(\varphi\) is \(\forall\).
8. \(\varphi \equiv \exists x \psi\): the main operator of \(\varphi\) is \(\exists\).
In each case, we intend the specific indicated occurrence of the main operator in the formula. For instance, since the formula \(((\theta \rightarrow \alpha) \rightarrow (\alpha \rightarrow \theta))\) is of the form \((\psi \rightarrow \chi)\) where \(\psi\) is \((\theta \rightarrow \alpha)\) and \(\chi\) is \((\alpha \rightarrow \theta)\), the second occurrence of \(\rightarrow\) is the main operator.

This is a recursive definition of a function which maps all non-atomic formulas to their main operator occurrence. Because of the way formulas are defined inductively, every formula \(\varphi\) satisfies one of the cases in Definition syn.12. This guarantees that for each non-atomic formula \(\varphi\) a main operator exists. Because each formula satisfies only one of these conditions, and because the smaller formulas from which \(\varphi\) is constructed are uniquely determined in each case, the main operator occurrence of \(\varphi\) is unique, and so we have defined a function.

We call formulas by the following names depending on which symbol their main operator is:

<table>
<thead>
<tr>
<th>Main operator</th>
<th>Type of formula</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>atomic (formula)</td>
<td>(\bot, \top, R(t_1, \ldots, t_n), t_1 = t_2)</td>
</tr>
<tr>
<td>(\neg)</td>
<td>negation</td>
<td>(\neg \varphi)</td>
</tr>
<tr>
<td>(\land)</td>
<td>conjunction</td>
<td>((\varphi \land \psi))</td>
</tr>
<tr>
<td>(\lor)</td>
<td>disjunction</td>
<td>((\varphi \lor \psi))</td>
</tr>
<tr>
<td>(\rightarrow)</td>
<td>conditional</td>
<td>((\varphi \rightarrow \psi))</td>
</tr>
<tr>
<td>(\forall)</td>
<td>universal (formula)</td>
<td>(\forall x \varphi)</td>
</tr>
<tr>
<td>(\exists)</td>
<td>existential (formula)</td>
<td>(\exists x \varphi)</td>
</tr>
</tbody>
</table>

syn.6 Subformulas

It is often useful to talk about the formulas that “make up” a given formula. We call these its subformulas. Any formula counts as a subformula of itself; a subformula of \(\varphi\) other than \(\varphi\) itself is a proper subformula.

Definition syn.13 (Immediate Subformula). If \(\varphi\) is a formula, the immediate subformulas of \(\varphi\) are defined inductively as follows:

1. Atomic formulas have no immediate subformulas.
2. \(\varphi \equiv \neg \psi\): The only immediate subformula of \(\varphi\) is \(\psi\).
3. \(\varphi \equiv (\psi * \chi)\): The immediate subformulas of \(\varphi\) are \(\psi\) and \(\chi\) (* is any one of the two-place connectives).
4. \(\varphi \equiv \forall x \psi\): The only immediate subformula of \(\varphi\) is \(\psi\).
5. \(\varphi \equiv \exists x \psi\): The only immediate subformula of \(\varphi\) is \(\psi\).

Definition syn.14 (Proper Subformula). If \(\varphi\) is a formula, the proper subformulas of \(\varphi\) are recursively as follows:

1. Atomic formulas have no proper subformulas.
2. \(\varphi \equiv \neg \psi\): The proper subformulas of \(\varphi\) are \(\psi\) together with all proper subformulas of \(\psi\).
3. \(\varphi \equiv (\psi \ast \chi) \): The proper subformulas of \(\varphi \) are \(\psi \), \(\chi \), together with all proper subformulas of \(\psi \) and those of \(\chi \).

4. \(\varphi \equiv \forall x \psi \): The proper subformulas of \(\varphi \) are \(\psi \) together with all proper subformulas of \(\psi \).

5. \(\varphi \equiv \exists x \psi \): The proper subformulas of \(\varphi \) are \(\psi \) together with all proper subformulas of \(\psi \).

Definition syn.15 (Subformula). The subformulas of \(\varphi \) are \(\varphi \) itself together with all its proper subformulas.

Note the subtle difference in how we have defined immediate subformulas and proper subformulas. In the first case, we have directly defined the immediate subformulas of a formula \(\varphi \) for each possible form of \(\varphi \). It is an explicit definition by cases, and the cases mirror the inductive definition of the set of formulas. In the second case, we have also mirrored the way the set of all formulas is defined, but in each case we have also included the proper subformulas of the smaller formulas \(\psi \), \(\chi \) in addition to these formulas themselves. This makes the definition recursive. In general, a definition of a function on an inductively defined set (in our case, formulas) is recursive if the cases in the definition of the function make use of the function itself. To be well defined, we must make sure, however, that we only ever use the values of the function for arguments that come “before” the one we are defining—in our case, when defining “proper subformula” for \((\psi \ast \chi) \) we only use the proper subformulas of the “earlier” formulas \(\psi \) and \(\chi \).

syn.7 Free Variables and Sentences

Definition syn.16 (Free occurrences of a variable). The free occurrences of a variable in a formula are defined inductively as follows:

1. \(\varphi \) is atomic: all variable occurrences in \(\varphi \) are free.
2. \(\varphi \equiv \neg \psi \): the free variable occurrences of \(\varphi \) are exactly those of \(\psi \).
3. \(\varphi \equiv (\psi \ast \chi) \): the free variable occurrences of \(\varphi \) are those in \(\psi \) together with those in \(\chi \).
4. \(\varphi \equiv \forall x \psi \): the free variable occurrences in \(\varphi \) are all of those in \(\psi \) except for occurrences of \(x \).
5. \(\varphi \equiv \exists x \psi \): the free variable occurrences in \(\varphi \) are all of those in \(\psi \) except for occurrences of \(x \).

Definition syn.17 (Bound Variables). An occurrence of a variable in a formula \(\varphi \) is bound if it is not free.
Problem syn.3. Give an inductive definition of the bound variable occurrences along the lines of Definition syn.16.

Definition syn.18 (Scope). If \(\forall x \psi \) is an occurrence of a subformula in a formula \(\varphi \), then the corresponding occurrence of \(\psi \) in \(\varphi \) is called the scope of the corresponding occurrence of \(\forall x \). Similarly for \(\exists x \).

If \(\psi \) is the scope of a quantifier occurrence \(\forall x \) or \(\exists x \) in \(\varphi \), then the free occurrences of \(x \) in \(\psi \) are bound in \(\forall x \psi \) and \(\exists x \psi \). We say that these occurrences are bound by the mentioned quantifier occurrence.

Example syn.19. Consider the following formula:

\[
\exists v_0 A^2_0(v_0, v_1) \psi
\]

\(\psi \) represents the scope of \(\exists v_0 \). The quantifier binds the occurrence of \(v_0 \) in \(\psi \), but does not bind the occurrence of \(v_1 \). So \(v_1 \) is a free variable in this case.

We can now see how this might work in a more complicated formula \(\varphi \):

\[
\forall v_0 (A^1_0(v_0) \rightarrow A^2_0(v_0, v_1)) \rightarrow \exists v_1 (A^2_1(v_0, v_1) \lor \forall v_0 \neg A^1_1(v_0)) \psi \chi
\]

\(\psi \) is the scope of the first \(\forall v_0 \), \(\chi \) is the scope of \(\exists v_1 \), and \(\theta \) is the scope of the second \(\forall v_0 \). The first \(\forall v_0 \) binds the occurrences of \(v_0 \) in \(\psi \), \(\exists v_1 \) the occurrence of \(v_1 \) in \(\chi \), and the second \(\forall v_0 \) binds the occurrence of \(v_0 \) in \(\theta \). The first occurrence of \(v_1 \) and the fourth occurrence of \(v_0 \) are free in \(\varphi \). The last occurrence of \(v_0 \) is free in \(\theta \), but bound in \(\chi \) and \(\varphi \).

Definition syn.20 (Sentence). A formula \(\varphi \) is a sentence if it contains no free occurrences of variables.

syn.8 Substitution

Definition syn.21 (Substitution in a term). We define \(s[t/x] \), the result of substituting \(t \) for every occurrence of \(x \) in \(s \), recursively:

1. \(s \equiv c \): \(s[t/x] \) is just \(s \).
2. \(s \equiv y \): \(s[t/x] \) is also just \(s \), provided \(y \) is a variable and \(y \not\equiv x \).
3. \(s \equiv x \): \(s[t/x] \) is \(t \).
4. \(s \equiv f(t_1, \ldots, t_n) \): \(s[t/x] \) is \(f(t_1[t/x], \ldots, t_n[t/x]) \).

Definition syn.22. A term \(t \) is free for \(x \) in \(\varphi \) if none of the free occurrences of \(x \) in \(\varphi \) occur in the scope of a quantifier that binds a variable in \(t \).
Explanation

Note that substitution may be vacuous: If \(x \) does not occur in \(\varphi \) at all, then \(\varphi[t/x] \) is just \(\varphi \).

The restriction that \(t \) must be free for \(x \) in \(\varphi \) is necessary to exclude cases like the following. If \(\varphi \equiv \exists y x < y \) and \(t \equiv y \), then \(\varphi[t/x] \) would be \(\exists y y < y \). In this case the free variable \(y \) is “captured” by the quantifier \(\exists y \) upon substitution, and that is undesirable. For instance, we would like it to be the case that whenever \(\forall x \psi \) holds, so does \(\psi[t/x] \). But consider \(\forall x \exists y x < y \) (here \(\psi \) is \(\exists y x < y \)). It is sentence that is true about, e.g., the natural numbers: for every number \(x \) there is a number \(y \) greater than it. If we allowed \(y \) as a possible substitution for \(x \), we would end up with \(\psi[y/x] \equiv \exists y y < y \), which is false. We prevent this by requiring that none of the free variables in \(t \) would end up being bound by a quantifier in \(\varphi \).

We often use the following convention to avoid cumbersome notation: If \(\varphi \) is a formula with a free variable \(x \), we write \(\varphi(x) \) to indicate this. When it is clear which \(\varphi \) and \(x \) we have in mind, and \(t \) is a term (assumed to be free for \(x \) in \(\varphi(x) \)), then we write \(\varphi(t) \) as short for \(\varphi(x)[t/x] \).

Example syn.23.

1. \(v_8 \) is free for \(v_1 \) in \(\exists v_3 A^2_3(v_3, v_1) \)
2. \(f^2_1(v_1, v_2) \) is **not** free for \(v_0 \) in \(\forall v_2 A^2_3(v_0, v_2) \)

Definition syn.24 (Substitution in a formula). If \(\varphi \) is a formula, \(x \) is a variable, and \(t \) is a term free for \(x \) in \(\varphi \), then \(\varphi[t/x] \) is the result of substituting \(t \) for all free occurrences of \(x \) in \(\varphi \).

1. \(\varphi \equiv \bot: \varphi[t/x] \) is \(\bot \).
2. \(\varphi \equiv \top: \varphi[t/x] \) is \(\top \).
3. \(\varphi \equiv P(t_1, \ldots, t_n): \varphi[t/x] \) is \(P(t_1[t/x], \ldots, t_n[t/x]) \).
4. \(\varphi \equiv t_1 = t_2: \varphi[t/x] \) is \(t_1[t/x] = t_2[t/x] \).
5. \(\varphi \equiv \neg \psi: \varphi[t/x] \) is \(\neg \psi[t/x] \).
6. \(\varphi \equiv (\psi \land \chi): \varphi[t/x] \) is \((\psi[t/x] \land \chi[t/x]) \).
7. \(\varphi \equiv (\psi \lor \chi): \varphi[t/x] \) is \((\psi[t/x] \lor \chi[t/x]) \).
8. \(\varphi \equiv (\psi \rightarrow \chi): \varphi[t/x] \) is \((\psi[t/x] \rightarrow \chi[t/x]) \).
9. \(\varphi \equiv (\psi \leftrightarrow \chi): \varphi[t/x] \) is \((\psi[t/x] \leftrightarrow \chi[t/x]) \).
10. \(\varphi \equiv \forall y \psi: \varphi[t/x] \) is \(\forall y \psi[t/x] \), provided \(y \) is a variable other than \(x \); otherwise \(\varphi[t/x] \) is just \(\varphi \).
11. \(\varphi \equiv \exists y \psi: \varphi[t/x] \) is \(\exists y \psi[t/x] \), provided \(y \) is a variable other than \(x \); otherwise \(\varphi[t/x] \) is just \(\varphi \).
Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the constant symbols, function symbols, and predicate symbols have no specific meaning attached to them. Meanings are given by specifying a structure. It specifies the domain, i.e., the objects which the constant symbols pick out, the function symbols operate on, and the quantifiers range over. In addition, it specifies which constant symbols pick out which objects, how a function symbol maps objects to objects, and which objects the predicate symbols apply to. Structures are the basis for semantic notions in logic, e.g., the notion of consequence, validity, satisfiability. They are variously called “structures,” “interpretations,” or “models” in the literature.

Definition syn.25 (Structures). A structure \(\mathfrak{M} \), for a language \(\mathcal{L} \) of first-order logic consists of the following elements:

1. **Domain**: a non-empty set, \(|\mathfrak{M}| \)
2. **Interpretation of constant symbols**: for each constant symbol \(c \) of \(\mathcal{L} \), an element \(c^{\mathfrak{M}} \in |\mathfrak{M}| \)
3. **Interpretation of predicate symbols**: for each \(n \)-place predicate symbol \(R \) of \(\mathcal{L} \) (other than \(= \)), an \(n \)-place relation \(R^{\mathfrak{M}} \subseteq |\mathfrak{M}|^n \)
4. **Interpretation of function symbols**: for each \(n \)-place function symbol \(f \) of \(\mathcal{L} \), an \(n \)-place function \(f^{\mathfrak{M}} : |\mathfrak{M}|^n \to |\mathfrak{M}| \)

Example syn.26. A structure \(\mathfrak{M} \) for the language of arithmetic consists of a set, an element of \(|\mathfrak{M}| \), \(\circ^{\mathfrak{M}} \), as interpretation of the constant symbol \(\circ \), a one-place function \(\circ^{\mathfrak{M}} : |\mathfrak{M}| \to |\mathfrak{M}| \), two two-place functions \(+^{\mathfrak{M}} \) and \(\times^{\mathfrak{M}} \), both \(|\mathfrak{M}|^2 \to |\mathfrak{M}| \), and a two-place relation \(<^{\mathfrak{M}} \subseteq |\mathfrak{M}|^2 \).

An obvious example of such a structure is the following:

1. \(|\mathfrak{M}| = \mathbb{N} \)
2. \(\circ^{\mathfrak{M}} = 0 \)
3. \(\circ^{\mathfrak{M}}(n) = n + 1 \) for all \(n \in \mathbb{N} \)
4. \(+^{\mathfrak{M}}(n, m) = n + m \) for all \(n, m \in \mathbb{N} \)
5. \(\times^{\mathfrak{M}}(n, m) = n \cdot m \) for all \(n, m \in \mathbb{N} \)
6. \(<^{\mathfrak{M}} = \{(n, m) : n \in \mathbb{N}, m \in \mathbb{N}, n < m \} \)

The structure \(\mathfrak{M} \) for \(\mathcal{L}_A \) so defined is called the standard model of arithmetic, because it interprets the non-logical constants of \(\mathcal{L}_A \) exactly how you would expect.

However, there are many other possible structures for \(\mathcal{L}_A \). For instance, we might take as the domain the set \(\mathbb{Z} \) of integers instead of \(\mathbb{N} \), and define the interpretations of \(\circ, \circ, +, \times, < \) accordingly. But we can also define structures for \(\mathcal{L}_A \) which have nothing even remotely to do with numbers.
Example syn.27. A structure \mathfrak{M} for the language \mathcal{L}_Z of set theory requires just a set and a single-two place relation. So technically, e.g., the set of people plus the relation “x is older than y” could be used as a structure for \mathcal{L}_Z, as well as \mathbb{N} together with $n \geq m$ for $n, m \in \mathbb{N}$.

A particularly interesting structure for \mathcal{L}_Z in which the elements of the domain are actually sets, and the interpretation of \in actually is the relation “x is an element of y” is the structure $\mathfrak{H}\mathfrak{F}$ of hereditarily finite sets:

1. $|\mathfrak{H}\mathfrak{F}| = \emptyset \cup \varphi(\emptyset) \cup \varphi(\varphi(\emptyset)) \cup \varphi(\varphi(\varphi(\emptyset))) \cup \ldots$;
2. $\in_{\mathfrak{H}\mathfrak{F}} = \{(x, y) : x, y \in |\mathfrak{H}\mathfrak{F}|, x \in y\}$.

The stipulations we make as to what counts as a structure impact our logic. For example, the choice to prevent empty domains ensures, given the usual account of satisfaction (or truth) for quantified sentences, that $\exists x (\varphi(x) \lor \neg \varphi(x))$ is valid—that is, a logical truth. And the stipulation that all constant symbols must refer to an object in the domain ensures that the existential generalization is a sound pattern of inference: $\varphi(a)$, therefore $\exists x \varphi(x)$. If we allowed names to refer outside the domain, or to not refer, then we would be on our way to a free logic, in which existential generalization requires an additional premise: $\varphi(a)$ and $\exists x x = a$, therefore $\exists x \varphi(x)$.

syn.10 Covered Structures for First-order Languages

Explanation

Recall that a term is *closed* if it contains no variables.

Definition syn.28 (Value of closed terms). If t is a closed term of the language \mathcal{L} and \mathfrak{M} is a structure for \mathcal{L}, the value $\text{Val}^{\mathfrak{M}}(t)$ is defined as follows:

1. If t is just the constant symbol c, then $\text{Val}^{\mathfrak{M}}(c) = c^{\mathfrak{M}}$.
2. If t is of the form $f(t_1, \ldots, t_n)$, then
 \[
 \text{Val}^{\mathfrak{M}}(t) = f^{\mathfrak{M}}(\text{Val}^{\mathfrak{M}}(t_1), \ldots, \text{Val}^{\mathfrak{M}}(t_n)).
 \]

Definition syn.29 (Covered structure). A structure is *covered* if every element of the domain is the value of some closed term.

Example syn.30. Let \mathcal{L} be the language with constant symbols zero, one, two, ..., the binary predicate symbol $<$, and the binary function symbols $+$ and \times. Then a structure \mathfrak{M} for \mathcal{L} is the one with domain $|\mathfrak{M}| = \{0, 1, 2, \ldots\}$ and assignments zero$^{\mathfrak{M}} = 0$, one$^{\mathfrak{M}} = 1$, two$^{\mathfrak{M}} = 2$, and so forth. For the binary relation symbol $<$, the set $<^{\mathfrak{M}}$ is the set of all pairs $(c_1, c_2) \in |\mathfrak{M}|^2$ such that c_1 is less than c_2: for example, $(1, 3) \in <^{\mathfrak{M}}$ but $(2, 2) \notin <^{\mathfrak{M}}$. For the binary function symbol $+$, define $+^{\mathfrak{M}}$ in the usual way—for example, $+^{\mathfrak{M}}(2, 3)$ maps to 5, and similarly for the binary function symbol \times. Hence, the value of
four is just 4, and the value of \(\times(two, +(three, zero)) \) (or in infix notation, \(two \times (three + zero) \)) is

\[
\begin{align*}
\text{Val}^\mathfrak{M}(\times(two, +(three, zero))) &= \\
&= \times^\mathfrak{M}(\text{Val}^\mathfrak{M}(two), \text{Val}^\mathfrak{M}((three, zero))) \\
&= \times^\mathfrak{M}(\text{Val}^\mathfrak{M}(two), \text{Val}^\mathfrak{M}(three), \text{Val}^\mathfrak{M}(zero))) \\
&= \times^\mathfrak{M}(two^\mathfrak{M}, (+^\mathfrak{M}(three^\mathfrak{M}, zero^\mathfrak{M}))) \\
&= \times^\mathfrak{M}(2, (+^\mathfrak{M}(3, 0))) \\
&= \times^\mathfrak{M}(2, 3) \\
&= 6
\end{align*}
\]

Problem syn.4. Is \(\mathfrak{N} \), the standard model of arithmetic, covered? Explain.

syn.11 Satisfaction of a Formula in a Structure

The basic notion that relates expressions such as terms and formulas, on the one hand, and structures on the other, are those of value of a term and satisfaction of a formula. Informally, the value of a term is an element of a structure—if the term is just a constant, its value is the object assigned to the constant by the structure, and if it is built up using function symbols, the value is computed from the values of constants and the functions assigned to the functions in the term. A formula is satisfied in a structure if the interpretation given to the predicates makes the formula true in the domain of the structure. This notion of satisfaction is specified inductively: the specification of the structure directly states when atomic formulas are satisfied, and we define when a complex formula is satisfied depending on the main connective or quantifier and whether or not the immediate subformulas are satisfied. The case of the quantifiers here is a bit tricky, as the immediate subformula of a quantified formula has a free variable, and structures don’t specify the values of variables. In order to deal with this difficulty, we also introduce variable assignments and define satisfaction not with respect to a structure alone, but with respect to a structure plus a variable assignment.

Definition syn.31 (Variable Assignment). A variable assignment \(s \) for a structure \(\mathfrak{M} \) is a function which maps each variable to an element of \(|\mathfrak{M}| \), i.e., \(s: \text{Var} \rightarrow |\mathfrak{M}| \).

A structure assigns a value to each constant symbol, and a variable assignment to each variable. But we want to use terms built up from them to also name elements of the domain. For this we define the value of terms inductively. For constant symbols and variables the value is just as the structure or the variable assignment specifies it; for more complex terms it is computed recursively using the functions the structure assigns to the function symbols.
Definition syn.32 (Value of Terms). If t is a term of the language L, M is a structure for L, and s is a variable assignment for M, the value $\text{Val}_s^M(t)$ is defined as follows:

1. $t \equiv c$: $\text{Val}_s^M(t) = c^M$.
2. $t \equiv x$: $\text{Val}_s^M(t) = s(x)$.
3. $t \equiv f(t_1, \ldots, t_n)$:

 $$\text{Val}_s^M(t) = f^M(\text{Val}_s^M(t_1), \ldots, \text{Val}_s^M(t_n)).$$

Definition syn.33 (x-Variant). If s is a variable assignment for a structure M, then any variable assignment s' for M which differs from s at most in what it assigns to x is called an x-variant of s. If s' is an x-variant of s we write $s' \sim_x s$.

Note that an x-variant of an assignment s does not have to assign something different to x. In fact, every assignment counts as an x-variant of itself.

Definition syn.34 (Satisfaction). Satisfaction of a formula φ in a structure M relative to a variable assignment s, in symbols: $M, s \models \varphi$, is defined recursively as follows. (We write $M, s \not\models \varphi$ to mean “not $M, s \models \varphi$.”)

1. $\varphi \equiv \bot$: $M, s \not\models \varphi$.
2. $\varphi \equiv \top$: $M, s \models \varphi$.
3. $\varphi \equiv R(t_1, \ldots, t_n)$: $M, s \models \varphi$ if and only if $\langle \text{Val}_s^M(t_1), \ldots, \text{Val}_s^M(t_n) \rangle \in R^M$.
4. $\varphi \equiv t_1 = t_2$: $M, s \models \varphi$ if and only if $\text{Val}_s^M(t_1) = \text{Val}_s^M(t_2)$.
5. $\varphi \equiv \lnot \psi$: $M, s \models \varphi$ if and only if $M, s \not\models \psi$.
6. $\varphi \equiv (\psi \land \chi)$: $M, s \models \varphi$ if and only if $M, s \models \psi$ and $M, s \models \chi$.
7. $\varphi \equiv (\psi \lor \chi)$: $M, s \models \varphi$ if and only if $M, s \models \psi$ or $M, s \models \chi$ (or both).
8. $\varphi \equiv (\psi \rightarrow \chi)$: $M, s \models \varphi$ if and only if $M, s \not\models \psi$ or $M, s \models \chi$ (or both).
9. $\varphi \equiv (\psi \leftrightarrow \chi)$: $M, s \models \varphi$ if and only if either both $M, s \models \psi$ and $M, s \models \chi$, or neither $M, s \models \psi$ nor $M, s \models \chi$.
10. $\varphi \equiv \forall x \psi$: $M, s \models \varphi$ if and only if for every x-variant s' of s, $M, s' \models \psi$.
11. $\varphi \equiv \exists x \psi$: $M, s \models \varphi$ if and only if there is an x-variant s' of s so that $M, s' \models \psi$.

The variable assignments are important in the last two clauses. We cannot define satisfaction of $\forall x \psi(x)$ by “for all $a \in |M|$, $M, a \models \psi(a)$.” We cannot define satisfaction of $\exists x \psi(x)$ by “for at least one $a \in |M|$, $M, a \models \psi(a)$.” The reason is that a is not a symbol of the language, and so $\psi(a)$ is not a formula (that is,
ψ[α/x] is undefined). We also cannot assume that we have constant symbols or terms available that name every element of \(M \), since there is nothing in the definition of structures that requires it. Even in the standard language the set of constant symbols is denumerable, so if \(|M| \) is not enumerable there aren’t even enough constant symbols to name every object.

Example syn.35. Let \(L = \{ a, b, f, R \} \) where \(a \) and \(b \) are constant symbols, \(f \) is a two-place function symbol, and \(R \) is a two-place predicate symbol. Consider the structure \(M \) defined by:

1. \(|M| = \{ 1, 2, 3, 4 \} \)
2. \(a^M = 1 \)
3. \(b^M = 2 \)
4. \(f^M(x, y) = x + y \) if \(x + y \leq 3 \) and = 3 otherwise.
5. \(R^M = \{ (1, 1), (1, 2), (2, 3), (2, 4) \} \)

The function \(s(x) = 1 \) that assigns 1 ∈ \(|M| \) to every variable is a variable assignment for \(M \).

Then

\[
\text{Val}_s^M(f(a, b)) = f^M(\text{Val}_s^M(a), \text{Val}_s^M(b)).
\]

Since \(a \) and \(b \) are constant symbols, \(\text{Val}_s^M(a) = a^M = 1 \) and \(\text{Val}_s^M(b) = b^M = 2 \). So

\[
\text{Val}_s^M(f(a, b)) = f^M(1, 2) = 1 + 2 = 3.
\]

To compute the value of \(f(f(a, b), a) \) we have to consider

\[
\text{Val}_s^M(f(f(a, b), a)) = f^M(\text{Val}_s^M(f(a, b)), \text{Val}_s^M(a)) = f^M(3, 1) = 3,
\]

since \(3 + 1 > 3 \). Since \(s(x) = 1 \) and \(\text{Val}_s^M(x) = s(x) \), we also have

\[
\text{Val}_s^M(f(f(a, b), x)) = f^M(\text{Val}_s^M(f(a, b)), \text{Val}_s^M(x)) = f^M(3, 1) = 3,
\]

An atomic formula \(R(t_1, t_2) \) is satisfied if the tuple of values of its arguments, i.e., \(\langle \text{Val}_s^M(t_1), \text{Val}_s^M(t_2) \rangle \), is an element of \(R^M \). So, e.g., we have \(M, s \models R(b, f(a, b)) \) since \(\langle \text{Val}_s^M(b), \text{Val}_s^M(f(a, b)) \rangle = (2, 3) \in R^M \), but \(M, s \not\models R(x, f(a, b)) \) since \((1, 3) \not\in R^M \).

To determine if a non-atomic formula \(\varphi \) is satisfied, you apply the clauses in the inductive definition that applies to the main connective. For instance, the main connective in \(R(a, a) \to (R(b, x) \lor R(x, b)) \) is the \(\to \), and

\[
M, s \models R(a, a) \to (R(b, x) \lor R(x, b)) \text{ iff } M, s \not\models R(a, a) \text{ or } M, s \models R(b, x) \lor R(x, b)
\]
Since $\mathcal{M}, s \models R(a, a)$ (because $\langle 1, 1 \rangle \in R^\mathcal{M}$) we can’t yet determine the answer and must first figure out if $\mathcal{M}, s \models R(b, x) \lor R(x, b)$:

$$\mathcal{M}, s \models R(b, x) \lor R(x, b) \text{ iff } \mathcal{M}, s \models R(b, x) \text{ or } \mathcal{M}, s \models R(x, b)$$

And this is the case, since $\mathcal{M}, s \models R(x, b)$ (because $\langle 1, 2 \rangle \in R^\mathcal{M}$).

Recall that an x-variant of s is a variable assignment that differs from s at most in what it assigns to x. For every element of $|\mathcal{M}|$, there is an x-variant of s: $s_1(x) = 1$, $s_2(x) = 2$, $s_3(x) = 3$, $s_4(x) = 4$, and with $s_i(y) = s(y) = 1$ for all variables y other than x. These are all the x-variants of s for the structure \mathcal{M}, since $|\mathcal{M}| = \{1, 2, 3, 4\}$. Note, in particular, that $s_1 = s$ is also an x-variant of s, i.e., s is always an x-variant of itself.

To determine if an existentially quantified formula $\exists x \varphi(x)$ is satisfied, we have to determine if $\mathcal{M}, s' \models \varphi(x)$ for at least one x-variant s' of s. So,

$$\mathcal{M}, s \models \exists x (R(b, x) \lor R(x, b)),$$

since $\mathcal{M}, s_1 \models R(b, x) \lor R(x, b)$ (s_3 would also fit the bill). But,

$$\mathcal{M}, s \not\models \exists x (R(b, x) \land R(x, b))$$

since for none of the s_i, $\mathcal{M}, s_i \models R(b, x) \land R(x, b)$.

To determine if a universally quantified formula $\forall x \varphi(x)$ is satisfied, we have to determine if $\mathcal{M}, s' \models \varphi(x)$ for all x-variants s' of s. So,

$$\mathcal{M}, s \models \forall x (R(x, a) \rightarrow R(a, x)),$$

since $\mathcal{M}, s_i \models R(x, a) \rightarrow R(a, x)$ for all s_i ($\mathcal{M}, s_1 \models R(a, x)$ and $\mathcal{M}, s_j \not\models R(x, a)$ for $j = 2, 3, 4$). But,

$$\mathcal{M}, s \not\models \forall x (R(a, x) \rightarrow R(x, a))$$

since $\mathcal{M}, s_2 \not\models R(a, x) \rightarrow R(x, a)$ (because $\mathcal{M}, s_2 \models R(a, x)$ and $\mathcal{M}, s_2 \not\models R(x, a)$).

For a more complicated case, consider

$$\forall x (R(a, x) \rightarrow \exists y R(x, y)).$$

Since $\mathcal{M}, s_3 \not\models R(a, x)$ and $\mathcal{M}, s_4 \not\models R(a, x)$, the interesting cases where we have to worry about the consequent of the conditional are only s_1 and s_2. Does $\mathcal{M}, s_1 \models \exists y R(x, y)$ hold? It does if there is at least one y-variant s'_1 of s_1 so that $\mathcal{M}, s'_1 \models R(x, y)$. In fact, s_1 is such a y-variant ($s_1(x) = 1$, $s_1(y) = 1$, and $\langle 1, 1 \rangle \in R^\mathcal{M}$), so the answer is yes. To determine if $\mathcal{M}, s_2 \models \exists y R(x, y)$ we have to look at the y-variants of s_2. Here, s_2 itself does not satisfy $R(x, y)$ ($s_2(x) = 2$, $s_2(y) = 1$, and $\langle 2, 1 \rangle \not\in R^\mathcal{M}$). However, consider $s'_2 \sim_y s_2$ with $s'_2(y) = 3$.

18 syntax-and-semantics rev. 2c33e9e (2021-03-08) by OLP / CC–BY
$M, s_2 \models R(x, y)$ since $(2, 3) \in R^M$, and so $M, s_2 \not\models \exists y \ R(x, y)$. In sum, for every x-variant s_i of s, either $M, s_i \not\models R(a, x)$ ($i = 3, 4$) or $M, s_i \models \exists y \ R(x, y)$ ($i = 1, 2$), and so

$$M, s_i \models \forall x \ (R(a, x) \rightarrow \exists y \ R(x, y)).$$

On the other hand,

$$M, s \not\models \exists x \ (R(a, x) \land \forall y \ R(x, y)).$$

The only x-variants s_i of s with $M, s_i \models R(a, x)$ are s_1 and s_2. But for each, there is in turn a y-variant $s_i' \sim_y s_i$ with $s_i'(y) = 4$ so that $M, s_i' \not\models R(x, y)$ and so $M, s_i \not\models \forall y \ R(x, y)$ for $i = 1, 2$. In sum, none of the x-variants $s_i \sim_x s$ are such that $M, s_i \models R(a, x) \land \forall y \ R(x, y)$.

Problem syn.5. Let $\mathcal{L} = \{c, f, A\}$ with one constant symbol, one one-place function symbol and one two-place predicate symbol, and let the structure \mathcal{M} be given by

1. $|\mathcal{M}| = \{1, 2, 3\}$
2. $c^\mathcal{M} = 3$
3. $f^\mathcal{M}(1) = 2, f^\mathcal{M}(2) = 3, f^\mathcal{M}(3) = 2$
4. $A^\mathcal{M} = \{(1, 2), (2, 3), (3, 3)\}$

(a) Let $s(v) = 1$ for all variables v. Find out whether

$$M, s \models \exists x \ (A(f(z), c) \rightarrow \forall y \ (A(y, x) \lor A(f(y), x))).$$

Explain why or why not.

(b) Give a different structure and variable assignment in which the formula is not satisfied.

syn.12 Variable Assignments

A variable assignment s provides a value for every variable—and there are infinitely many of them. This is of course not necessary. We require variable assignments to assign values to all variables simply because it makes things a lot easier. The value of a term t, and whether or not a formula φ is satisfied in a structure with respect to s, only depend on the assignments s makes to the variables in t and the free variables of φ. This is the content of the next two propositions. To make the idea of “depends on” precise, we show that any two variable assignments that agree on all the variables in t give the same value, and that φ is satisfied relative to one iff it is satisfied relative to the other if two variable assignments agree on all free variables of φ.

Proposition syn.36. If the variables in a term t are among x_1, \ldots, x_n, and $s_1(x_i) = s_2(x_i)$ for $i = 1, \ldots, n$, then $\text{Val}^{\mathcal{M}}_{s_1}(t) = \text{Val}^{\mathcal{M}}_{s_2}(t)$.
Proof. By induction on the complexity of t. For the base case, t can be a constant symbol or one of the variables x_1, \ldots, x_n. If $t = c$, then $Val^M(t) = c^M = Val^M_s(t)$. If $t = x_i$, $s_1(x_i) = s_2(x_i)$ by the hypothesis of the proposition, and so $Val^M_s(t) = s_1(x_i) = s_2(x_i) = Val^M_s(t)$.

For the inductive step, assume that $t = f(t_1, \ldots, t_k)$ and that the claim holds for t_1, \ldots, t_k. Then

$$Val^M_{s_1}(t) = Val^M_{s_1}(f(t_1, \ldots, t_k)) = f^M(Val^M_{s_1}(t_1), \ldots, Val^M_{s_1}(t_k))$$

For $j = 1, \ldots, k$, the variables of t_j are among x_1, \ldots, x_n. So by induction hypothesis, $Val^M_{s_1}(t_j) = Val^M_{s_1}(t_j)$. So,

$$Val^M_{s_1}(t) = Val^M_{s_2}(f(t_1, \ldots, t_k)) = f^M(Val^M_{s_2}(t_1), \ldots, Val^M_{s_2}(t_k)) = f^M(Val^M_{s_2}(t_1), \ldots, Val^M_{s_2}(t_k)) = Val^M_{s_2}(f(t_1, \ldots, t_k)) = Val^M_{s_2}(t).$$

\[\square \]

Proposition syn.37. If the free variables in φ are among x_1, \ldots, x_n, and $s_1(x_i) = s_2(x_i)$ for $i = 1, \ldots, n$, then $M, s_1 \vDash \varphi$ iff $M, s_2 \vDash \varphi$.

Proof. We use induction on the complexity of φ. For the base case, where φ is atomic, φ can be: $\top, \bot, R(t_1, \ldots, t_k)$ for a k-place predicate R and terms t_1, \ldots, t_k, or $t_1 = t_2$ for terms t_1 and t_2.

1. $\varphi \equiv \top$: both $M, s_1 \vDash \varphi$ and $M, s_2 \vDash \varphi$.
2. $\varphi \equiv \bot$: both $M, s_1 \nvdash \varphi$ and $M, s_2 \nvdash \varphi$.
3. $\varphi \equiv R(t_1, \ldots, t_k)$: let $M, s_1 \vDash \varphi$. Then

$$\langle Val^M_{s_1}(t_1), \ldots, Val^M_{s_1}(t_k) \rangle \in R^M.$$

For $i = 1, \ldots, k$, $Val^M_{s_1}(t_i) = Val^M_{s_2}(t_i)$ by Proposition syn.36. So we also have $\langle Val^M_{s_2}(t_1), \ldots, Val^M_{s_2}(t_k) \rangle \in R^M$.

4. $\varphi \equiv t_1 = t_2$: suppose $M, s_1 \vDash \varphi$. Then $Val^M_{s_1}(t_1) = Val^M_{s_1}(t_2)$. So,

$$Val^M_{s_2}(t_1) = Val^M_{s_2}(t_1) \quad \text{(by Proposition syn.36)}$$

$$= Val^M_{s_1}(t_2) \quad \text{(since } M, s_1 \vDash t_1 = t_2)$$

$$= Val^M_{s_2}(t_2) \quad \text{(by Proposition syn.36)},$$

so $M, s_2 \vDash t_1 = t_2$.

\(20\)
Now assume $\mathcal{M}, s_1 \vDash \varphi$ iff $\mathcal{M}, s_2 \not\vDash \varphi$ for all formulas ψ less complex than φ. The induction step proceeds by cases determined by the main operator of φ. In each case, we only demonstrate the forward direction of the biconditional; the proof of the reverse direction is symmetrical. In all cases except those for the quantifiers, we apply the induction hypothesis to sub-formulas ψ of φ. The free variables of ψ are among those of φ. Thus, if s_1 and s_2 agree on the free variables of φ, they also agree on those of ψ, and the induction hypothesis applies to ψ.

1. $\varphi \equiv \neg \psi$: if $\mathcal{M}, s_1 \vDash \varphi$, then $\mathcal{M}, s_1 \not\vDash \psi$, so by the induction hypothesis, $\mathcal{M}, s_2 \not\vDash \psi$, hence $\mathcal{M}, s_2 \vDash \varphi$.

2. $\varphi \equiv \psi \land \chi$: if $\mathcal{M}, s_1 \vDash \varphi$, then $\mathcal{M}, s_1 \vDash \psi$ and $\mathcal{M}, s_1 \vDash \chi$, so by induction hypothesis, $\mathcal{M}, s_2 \vDash \psi$ and $\mathcal{M}, s_2 \vDash \chi$. Hence, $\mathcal{M}, s_2 \vDash \varphi$.

3. $\varphi \equiv \psi \lor \chi$: if $\mathcal{M}, s_1 \vDash \varphi$, then $\mathcal{M}, s_1 \vDash \psi$ or $\mathcal{M}, s_1 \vDash \chi$. By induction hypothesis, $\mathcal{M}, s_2 \vDash \psi$ or $\mathcal{M}, s_2 \vDash \chi$, so $\mathcal{M}, s_2 \vDash \varphi$.

4. $\varphi \equiv \psi \rightarrow \chi$: if $\mathcal{M}, s_1 \vDash \varphi$, then $\mathcal{M}, s_1 \not\vDash \psi$ or $\mathcal{M}, s_1 \vDash \chi$. By the induction hypothesis, either $\mathcal{M}, s_2 \vDash \psi$ or $\mathcal{M}, s_2 \vDash \chi$, so $\mathcal{M}, s_2 \vDash \varphi$.

5. $\varphi \equiv \psi \leftrightarrow \chi$: if $\mathcal{M}, s_1 \vDash \varphi$, then either $\mathcal{M}, s_1 \vDash \psi$ and $\mathcal{M}, s_1 \vDash \chi$, or $\mathcal{M}, s_1 \not\vDash \psi$ and $\mathcal{M}, s_1 \not\vDash \chi$. By the induction hypothesis, either $\mathcal{M}, s_2 \vDash \psi$ and $\mathcal{M}, s_2 \vDash \chi$ or $\mathcal{M}, s_2 \not\vDash \psi$ and $\mathcal{M}, s_2 \not\vDash \chi$. In either case, $\mathcal{M}, s_2 \vDash \varphi$.

6. $\varphi \equiv \exists x \psi$: if $\mathcal{M}, s_1 \vDash \varphi$, there is an x-variant s'_1 of s_1 so that $\mathcal{M}, s'_1 \vDash \psi$.

Let s'_2 be the x-variant of s_2 that assigns the same thing to x as does s'_1. The free variables of ψ are among x_1, \ldots, x_n, and x. $s'_1(x_i) = s'_2(x_i)$, since s'_1 and s'_2 are x-variants of s_1 and s_2, respectively, and by hypothesis $s_1(x_i) = s_2(x_i)$. $s'_1(x) = s'_2(x)$ by the way we have defined s'_2. Then the induction hypothesis applies to ψ and s'_1, s'_2, so $\mathcal{M}, s'_2 \vDash \psi$. Hence, there is an x-variant of s_2 that satisfies ψ, and so $\mathcal{M}, s_2 \vDash \varphi$.

7. $\varphi \equiv \forall x \psi$: if $\mathcal{M}, s_1 \vDash \varphi$, then for every x-variant s'_1 of s_1, $\mathcal{M}, s'_1 \vDash \psi$.

Take an arbitrary x-variant s'_2 of s_2, let s'_1 be the x-variant of s_1 which assigns the same thing to x as does s'_2. The free variables of ψ are among x_1, \ldots, x_n, and x. $s'_1(x_i) = s'_2(x_i)$, since s'_1 and s'_2 are x-variants of s_1 and s_2, respectively, and by hypothesis $s_1(x_i) = s_2(x_i)$. $s'_1(x) = s'_2(x)$ by the way we have defined s'_1. Then the induction hypothesis applies to ψ and s'_1, s'_2, and we have $\mathcal{M}, s'_1 \vDash \psi$. Since s'_2 is an arbitrary x-variant of s_2, every x-variant of s_2 satisfies ψ, and so $\mathcal{M}, s_2 \vDash \varphi$.

By induction, we get that $\mathcal{M}, s_1 \vDash \varphi$ iff $\mathcal{M}, s_2 \not\vDash \varphi$ whenever the free variables in φ are among x_1, \ldots, x_n and $s_1(x_i) = s_2(x_i)$ for $i = 1, \ldots, n$.

Problem syn.6. Complete the proof of Proposition syn.37.
Sentences have no free variables, so any two variable assignments assign the same things to all the (zero) free variables of any sentence. The proposition just proved then means that whether or not a sentence is satisfied in a structure relative to a variable assignment is completely independent of the assignment. We'll record this fact. It justifies the definition of satisfaction of a sentence in a structure (without mentioning a variable assignment) that follows.

Corollary syn.38. If \(\varphi \) is a sentence and \(s \) a variable assignment, then \(\mathcal{M},s \models \varphi \) if \(\mathcal{M},s' \models \varphi \) for every variable assignment \(s' \).

Proof. Let \(s' \) be any variable assignment. Since \(\varphi \) is a sentence, it has no free variables, and so every variable assignment \(s' \) trivially assigns the same things to all free variables of \(\varphi \) as does \(s \). So the condition of Proposition syn.37 is satisfied, and we have \(\mathcal{M},s \models \varphi \) if \(\mathcal{M},s' \models \varphi \). \(\qed \)

Definition syn.39. If \(\varphi \) is a sentence, we say that a structure \(\mathcal{M} \) satisfies \(\varphi \), \(\mathcal{M} \models \varphi \), if \(\mathcal{M},s \models \varphi \) for all variable assignments \(s \).

If \(\mathcal{M} \models \varphi \), we also simply say that \(\varphi \) is true in \(\mathcal{M} \).

Proposition syn.40. Let \(\mathcal{M} \) be a structure, \(\varphi \) be a sentence, and \(s \) a variable assignment. \(\mathcal{M} \models \varphi \) if \(\mathcal{M},s \models \varphi \).

Proof. Exercise. \(\qed \)

Problem syn.7. Prove Proposition syn.40

Proposition syn.41. Suppose \(\varphi(x) \) only contains \(x \) free, and \(\mathcal{M} \) is a structure. Then:

1. \(\mathcal{M} \models \exists x \varphi(x) \) if \(\mathcal{M},s \models \varphi(x) \) for at least one variable assignment \(s \).
2. \(\mathcal{M} \models \forall x \varphi(x) \) if \(\mathcal{M},s \models \varphi(x) \) for all variable assignments \(s \).

Proof. Exercise. \(\qed \)

Problem syn.8. Prove Proposition syn.41.

Problem syn.9. Suppose \(\mathcal{L} \) is a language without function symbols. Given a structure \(\mathcal{M} \), \(c \) a constant symbol and \(a \in |\mathcal{M}| \), define \(\mathcal{M}[a/c] \) to be the structure that is just like \(\mathcal{M} \), except that \(c^{\mathcal{M}[a/c]} = a \). Define \(\mathcal{M} \models \varphi \) for sentences \(\varphi \) by:

1. \(\varphi \equiv \bot \) : not \(\mathcal{M} \models \varphi \).
2. \(\varphi \equiv \top \) : \(\mathcal{M} \models \varphi \).
3. \(\varphi \equiv R(d_1,\ldots,d_n) \) : \(\mathcal{M} \models \varphi \) if \((d_1^{\mathcal{M}},\ldots,d_n^{\mathcal{M}}) \in R^{\mathcal{M}} \).
4. \(\varphi \equiv d_1 = d_2 \) : \(\mathcal{M} \models \varphi \) if \(d_1^{\mathcal{M}} = d_2^{\mathcal{M}} \).
5. \(\varphi \equiv \neg \psi \): \(M \models \varphi \) iff not \(M \models \psi \).

6. \(\varphi \equiv (\psi \land \chi) \): \(M \models \varphi \) iff \(M \models \psi \) and \(M \models \chi \).

7. \(\varphi \equiv (\psi \lor \chi) \): \(M \models \varphi \) iff \(M \models \psi \) or \(M \models \chi \) (or both).

8. \(\varphi \equiv (\psi \rightarrow \chi) \): \(M \models \varphi \) iff not \(M \models \psi \) or \(M \models \chi \) (or both).

9. \(\varphi \equiv (\psi \leftrightarrow \chi) \): \(M \models \varphi \) iff either both \(M \models \psi \) and \(M \models \chi \), or neither \(M \models \psi \) nor \(M \models \chi \).

10. \(\varphi \equiv \forall x \psi \): \(M \models \varphi \) iff for all \(a \in |M| \), \(M[a/c] \models \psi[c/x] \), if \(c \) does not occur in \(\psi \).

11. \(\varphi \equiv \exists x \psi \): \(M \models \varphi \) iff there is an \(a \in |M| \) such that \(M[a/c] \models \psi[c/x] \), if \(c \) does not occur in \(\psi \).

Let \(x_1, \ldots, x_n \) be all free variables in \(\varphi \), \(c_1, \ldots, c_n \) constant symbols not in \(\varphi \), \(a_1, \ldots, a_n \in |M| \), and \(s(x_i) = a_i \).

Show that \(M, s \models \varphi \) iff \(M[a_1/c_1, \ldots, a_n/c_n] \models \varphi[c_1/x_1] \ldots [c_n/x_n] \).

(This problem shows that it is possible to give a semantics for first-order logic that makes do without variable assignments.)

Problem syn.10. Suppose that \(f \) is a function symbol not in \(\varphi(x, y) \). Show that there is a structure \(M \) such that \(M \models \forall x \exists y \varphi(x, y) \) iff there is an \(M' \) such that \(M' \models \forall x \varphi(x, f(x)) \).

(This problem is a special case of what’s known as Skolem’s Theorem; \(\forall x \varphi(x, f(x)) \) is called a Skolem normal form of \(\forall x \exists y \varphi(x, y) \).)

13 Extensionality

Extensionality, sometimes called relevance, can be expressed informally as follows: the only factors that bears upon the satisfaction of formula \(\varphi \) in a structure \(M \) relative to a variable assignment \(s \), are the size of the domain and the assignments made by \(M \) and \(s \) to the elements of the language that actually appear in \(\varphi \).

One immediate consequence of extensionality is that where two structures \(M \) and \(M' \) agree on all the elements of the language appearing in a sentence \(\varphi \) and have the same domain, \(M \) and \(M' \) must also agree on whether or not \(\varphi \) itself is true.

Proposition syn.42 (Extensionality). Let \(\varphi \) be a formula, and \(M_1 \) and \(M_2 \) be structures with \(|M_1| = |M_2| \), and \(s \) a variable assignment on \(|M_1| = |M_2| \). If \(c^{M_1} = c^{M_2} \), \(R^{M_1} = R^{M_2} \), and \(f^{M_1} = f^{M_2} \) for every constant symbol \(c \), relation symbol \(R \), and function symbol \(f \) occurring in \(\varphi \), then \(M_1, s \models \varphi \) iff \(M_2, s \models \varphi \).
Proof. First prove (by induction on t) that for every term, $\text{Val}^{M_1}_s(t) = \text{Val}^{M_2}_s(t)$. Then prove the proposition by induction on φ, making use of the claim just proved for the induction basis (where φ is atomic).

Problem syn.11. Carry out the proof of Proposition syn.42 in detail.

Corollary syn.43 (Extensionality for Sentences). Let φ be a sentence and M_1, M_2 as in Proposition syn.42. Then $M_1 \models \varphi$ iff $M_2 \models \varphi$.

Proof. Follows from Proposition syn.42 by Corollary syn.38.

Moreover, the value of a term, and whether or not a structure satisfies a formula, only depends on the values of its subterms.

Proposition syn.44. Let M be a structure, t and t' terms, and s a variable assignment. Let $s' \sim_x s$ be the x-variant of s given by $s'(x) = \text{Val}^{M}_s(t')$. Then $\text{Val}^{M}_s(t[t'/x]) = \text{Val}^{M}_s(t)$.

Proof. By induction on t.

1. If t is a constant, say, $t \equiv c$, then $t[t'/x] = c$, and $\text{Val}^{M}_s(c) = c^{M} = \text{Val}^{M}_s'(c)$.

2. If t is a variable other than x, say, $t \equiv y$, then $t[t'/x] = y$, and $\text{Val}^{M}_s(y) = \text{Val}^{M}_s'(y)$ since $s' \sim_x s$.

3. If $t \equiv x$, then $t[t'/x] = t'$. But $\text{Val}^{M}_s(x) = \text{Val}^{M}_s(t')$ by definition of s'.

4. If $t \equiv f(t_1, \ldots, t_n)$ then we have:

$$\text{Val}^{M}_s(t[t'/x]) =$$

$$= \text{Val}^{M}_s(f(t_1[t'/x], \ldots, t_n[t'/x]))$$

by definition of $t[t'/x]$

$$= f^{M}(\text{Val}^{M}_s(t_1[t'/x]), \ldots, \text{Val}^{M}_s(t_n[t'/x]))$$

by definition of $\text{Val}^{M}_s(f(\ldots))$

$$= f^{M}(\text{Val}^{M}_s'(t_1), \ldots, \text{Val}^{M}_s'(t_n))$$

by induction hypothesis

$$= \text{Val}^{M}_s'(t)$$

by definition of $\text{Val}^{M}_s'(f(\ldots))$.

Proposition syn.45. Let M be a structure, φ a formula, t a term, and s a variable assignment. Let $s' \sim_x s$ be the x-variant of s given by $s'(x) = \text{Val}^{M}_s(t)$. Then $M, s \models \varphi[t/x]$ iff $M, s' \models \varphi$.

Proof. Exercise.

Problem syn.12. Prove Proposition syn.45.
syn.14 Semantic Notions

Give the definition of structures for first-order languages, we can define some basic semantic properties of and relationships between sentences. The simplest of these is the notion of validity of a sentence. A sentence is valid if it is satisfied in every structure. Valid sentences are those that are satisfied regardless of how the non-logical symbols in it are interpreted. Valid sentences are therefore also called logical truths—they are true, i.e., satisfied, in any structure and hence their truth depends only on the logical symbols occurring in them and their syntactic structure, but not on the non-logical symbols or their interpretation.

Definition syn.46 (Validity). A sentence \(\varphi \) is valid, \(\models \varphi \), iff \(M \models \varphi \) for every structure \(M \).

Definition syn.47 (Entailment). A set of sentences \(\Gamma \) entails a sentence \(\varphi \), \(\Gamma \models \varphi \), iff for every structure \(M \) with \(M \models \Gamma \), \(M \models \varphi \).

Definition syn.48 (Satisfiability). A set of sentences \(\Gamma \) is satisfiable if \(M \models \Gamma \) for some structure \(M \). If \(\Gamma \) is not satisfiable it is called unsatisfiable.

Proposition syn.49. A sentence \(\varphi \) is valid iff \(\Gamma \models \varphi \) for every set of sentences \(\Gamma \).

Proof. For the forward direction, let \(\varphi \) be valid, and let \(\Gamma \) be a set of sentences. Let \(M \) be a structure so that \(M \models \Gamma \). Since \(\varphi \) is valid, \(M \models \varphi \), hence \(\Gamma \models \varphi \).

For the contrapositive of the reverse direction, let \(\varphi \) be invalid, so there is a structure \(M \) with \(M \not\models \varphi \). When \(\Gamma = \{ \top \} \), since \(\top \) is valid, \(M \models \Gamma \). Hence, there is a structure \(M \) so that \(M \models \Gamma \) but \(M \not\models \varphi \), hence \(\Gamma \) does not entail \(\varphi \). \(\square \)

Proposition syn.50. \(\Gamma \models \varphi \) iff \(\Gamma \cup \{ \neg \varphi \} \) is unsatisfiable.

Proof. For the forward direction, suppose \(\Gamma \models \varphi \) and suppose to the contrary that there is a structure \(M \) so that \(M \models \Gamma \cup \{ \neg \varphi \} \). Since \(M \models \Gamma \) and \(\Gamma \models \varphi \), \(M \models \varphi \). Also, since \(M \models \Gamma \cup \{ \neg \varphi \} \), \(M \models \neg \varphi \), so we have both \(M \models \varphi \) and \(M \models \neg \varphi \), a contradiction. Hence, there can be no such structure \(M \), so \(\Gamma \cup \{ \varphi \} \) is unsatisfiable.

For the reverse direction, suppose \(\Gamma \cup \{ \neg \varphi \} \) is unsatisfiable. So for every structure \(M \), either \(M \not\models \varphi \) or \(M \models \varphi \). Hence, for every structure \(M \) with \(M \models \Gamma \), \(M \models \varphi \), so \(\Gamma \models \varphi \). \(\square \)

Problem syn.13. 1. Show that \(\Gamma \models \bot \) iff \(\Gamma \) is unsatisfiable.

2. Show that \(\Gamma \cup \{ \varphi \} \models \bot \) iff \(\Gamma \models \neg \varphi \).

3. Suppose \(c \) does not occur in \(\varphi \) or \(\Gamma \). Show that \(\Gamma \models \forall x \varphi \) iff \(\Gamma \models \varphi[c/x] \).

Proposition syn.51. If \(\Gamma \subseteq \Gamma' \) and \(\Gamma \models \varphi \), then \(\Gamma' \models \varphi \).
Proof. Suppose that $\Gamma \subseteq \Gamma'$ and $\Gamma \models \varphi$. Let \mathcal{M} be such that $\mathcal{M} \models \Gamma'$; then $\mathcal{M} \models \Gamma$, and since $\Gamma \models \varphi$, we get that $\mathcal{M} \models \varphi$. Hence, whenever $\mathcal{M} \models \Gamma'$, $\mathcal{M} \models \varphi$, so $\Gamma' \models \varphi$.

\[\Box\]

Theorem syn.52 (Semantic Deduction Theorem). $\Gamma \cup \{\varphi\} \models \psi$ iff $\Gamma \models \varphi \rightarrow \psi$.

Proof. For the forward direction, let $\Gamma \cup \{\varphi\} \models \psi$ and let \mathcal{M} be a structure so that $\mathcal{M} \models \Gamma$. If $\mathcal{M} \models \varphi$, then $\mathcal{M} \models \Gamma \cup \{\varphi\}$, so since $\Gamma \cup \{\varphi\}$ entails ψ, we get $\mathcal{M} \models \psi$. Therefore, $\mathcal{M} \models \varphi \rightarrow \psi$, so $\Gamma \models \varphi \rightarrow \psi$.

For the reverse direction, let $\Gamma \models \varphi \rightarrow \psi$ and \mathcal{M} be a structure so that $\mathcal{M} \models \Gamma \cup \{\varphi\}$. Then $\mathcal{M} \models \Gamma$, so $\mathcal{M} \models \varphi \rightarrow \psi$, and since $\mathcal{M} \models \varphi$, $\mathcal{M} \models \psi$. Hence, whenever $\mathcal{M} \models \Gamma \cup \{\varphi\}$, $\mathcal{M} \models \psi$, so $\Gamma \models \{\varphi\} \models \psi$.

\[\Box\]

Proposition syn.53. Let \mathcal{M} be a structure, and $\varphi(x)$ a formula with one free variable x, and t a closed term. Then:

1. $\varphi(t) \models \exists x \varphi(x)$
2. $\forall x \varphi(x) \models \varphi(t)$

Proof.

1. Suppose $\mathcal{M} \models \varphi(t)$. Let s be a variable assignment with $s(x) = \text{Val}_{\mathcal{M}}(t)$. Then $\mathcal{M}, s \models \varphi(t)$ since $\varphi(t)$ is a sentence. By Proposition syn.45, $\mathcal{M}, s \models \varphi(x)$. By Proposition syn.41, $\mathcal{M} \models \exists x \varphi(x)$.

2. Suppose $\mathcal{M} \models \forall x \varphi(x)$. Let s be a variable assignment with $s(x) = \text{Val}_{\mathcal{M}}(t)$. By Proposition syn.41, $\mathcal{M}, s \models \varphi(x)$. By Proposition syn.45, $\mathcal{M}, s \models \varphi(t)$. By Proposition syn.40, $\mathcal{M} \models \varphi(t)$ since $\varphi(t)$ is a sentence.

\[\Box\]

Problem syn.14. Complete the proof of Proposition syn.53.

Photo Credits
Bibliography