syn.1 Structures for First-order Languages

First-order languages are, by themselves, *uninterpreted*: the constant symbols, function symbols, and predicate symbols have no specific meaning attached to them. Meanings are given by specifying a *structure*. It specifies the *domain*, i.e., the objects which the constant symbols pick out, the function symbols operate on, and the quantifiers range over. In addition, it specifies which constant symbols pick out which objects, how a function symbol maps objects to objects, and which objects the predicate symbols apply to. *Structures* are the basis for *semantic* notions in logic, e.g., the notion of consequence, validity, satisfiability. They are variously called “structures,” “interpretations,” or “models” in the literature.

**Definition **syn.1 (Structures). A *structure* \mathcal{M}, for a language \mathcal{L} of first-order logic consists of the following elements:

1. **Domain:** a non-empty set, $|\mathcal{M}|$

2. **Interpretation of constant symbols:** for each constant symbol c of \mathcal{L}, an element $c^{\mathcal{M}} \in |\mathcal{M}|$

3. **Interpretation of predicate symbols:** for each n-place predicate symbol R of \mathcal{L} (other than $=$), an n-place relation $R^{\mathcal{M}} \subseteq |\mathcal{M}|^n$

4. **Interpretation of function symbols:** for each n-place function symbol f of \mathcal{L}, an n-place function $f^{\mathcal{M}} : |\mathcal{M}|^n \to |\mathcal{M}|$

Example syn.2. A structure \mathcal{M} for the language of arithmetic consists of a set, an element of $|\mathcal{M}|$, $0^\mathcal{M}$, as interpretation of the constant symbol 0, a one-place function $^\mathcal{M} : |\mathcal{M}| \to |\mathcal{M}|$, two two-place functions $+^\mathcal{M}$ and $\times^\mathcal{M}$, both $|\mathcal{M}|^2 \to |\mathcal{M}|$, and a two-place relation $<^\mathcal{M} \subseteq |\mathcal{M}|^2$.

An obvious example of such a structure is the following:

1. $|\mathcal{M}| = \mathbb{N}$
2. $0^\mathcal{M} = 0$
3. $^\mathcal{M}(n) = n + 1$ for all $n \in \mathbb{N}$
4. $+^\mathcal{M}(n, m) = n + m$ for all $n, m \in \mathbb{N}$
5. $\times^\mathcal{M}(n, m) = n \cdot m$ for all $n, m \in \mathbb{N}$
6. $<^\mathcal{M} = \{(n, m) : n \in \mathbb{N}, m \in \mathbb{N}, n < m\}$

The structure \mathcal{M} for \mathcal{L}_A so defined is called the *standard model of arithmetic*, because it interprets the non-logical constants of \mathcal{L}_A exactly how you would expect.

However, there are many other possible *structures* for \mathcal{L}_A. For instance, we might take as the domain the set \mathbb{Z} of integers instead of \mathbb{N}, and define the interpretations of 0, $<$ accordingly. But we can also define structures for \mathcal{L}_A which have nothing even remotely to do with numbers.
Example syn.3. A structure \mathfrak{M} for the language L_Z of set theory requires just a set and a single-two place relation. So technically, e.g., the set of people plus the relation “x is older than y” could be used as a structure for L_Z, as well as \mathbb{N} together with $n \geq m$ for $n, m \in \mathbb{N}$.

A particularly interesting structure for L_Z in which the elements of the domain are actually sets, and the interpretation of \in actually is the relation “x is an element of y” is the structure \mathcal{HF} of hereditarily finite sets:

1. $|\mathcal{HF}| = \emptyset \cup \wp(\emptyset) \cup \wp(\wp(\emptyset)) \cup \wp(\wp(\wp(\emptyset))) \cup \ldots$;
2. $\in_{\mathcal{HF}} = \{\langle x, y \rangle : x, y \in |\mathcal{HF}|, x \in y \}$.

The stipulations we make as to what counts as a structure impact our logic. For example, the choice to prevent empty domains ensures, given the usual account of satisfaction (or truth) for quantified sentences, that $\exists x (\varphi(x) \lor \neg \varphi(x))$ is valid—that is, a logical truth. And the stipulation that all constant symbols must refer to an object in the domain ensures that the existential generalization is a sound pattern of inference: $\varphi(a)$, therefore $\exists x \varphi(x)$. If we allowed names to refer outside the domain, or to not refer, then we would be on our way to a free logic, in which existential generalization requires an additional premise: $\varphi(a)$ and $\exists x x = a$, therefore $\exists x \varphi(x)$.

Photo Credits

Bibliography