syn.1 Main operator of a Formula

fol:syn:mai:

It is often useful to talk about the last operator used in constructing a explanation formula φ . This operator is called the main operator of φ . Intuitively, it is the "outermost" operator of φ . For example, the main operator of $\neg \varphi$ is \neg , the main operator of $(\varphi \lor \psi)$ is \lor , etc.

def:main-op

folisyn:mai: **Definition syn.1** (Main operator). The main operator of a formula φ is defined as follows:

- 1. φ is atomic: φ has no main operator.
- 2. $\varphi \equiv \neg \psi$: the main operator of φ is \neg .
- 3. $\varphi \equiv (\psi \wedge \chi)$: the main operator of φ is \wedge .
- 4. $\varphi \equiv (\psi \vee \chi)$: the main operator of φ is \vee .
- 5. $\varphi \equiv (\psi \rightarrow \chi)$: the main operator of φ is \rightarrow .
- 6. $\varphi \equiv (\psi \leftrightarrow \chi)$: the main operator of φ is \leftrightarrow .
- 7. $\varphi \equiv \forall x \, \psi$: the main operator of φ is \forall .
- 8. $\varphi \equiv \exists x \, \psi$: the main operator of φ is \exists .

In each case, we intend the specific indicated occurrence of the main operator in the formula. For instance, since the formula $((\theta \to \alpha) \to (\alpha \to \theta))$ is of the form $(\psi \to \chi)$ where ψ is $(\theta \to \alpha)$ and χ is $(\alpha \to \theta)$, the second occurrence of \rightarrow is the main operator.

This is a recursive definition of a function which maps all non-atomic formulas to their main operator occurrence. Because of the way formulas are defined inductively, every formula φ satisfies one of the cases in Definition syn.1. This guarantees that for each non-atomic formula φ a main operator exists. Because each formula satisfies only one of these conditions, and because the smaller formulas from which φ is constructed are uniquely determined in each case, the main operator occurrence of φ is unique, and so we have defined a function.

We call formulas by the following names depending on which symbol their main operator is:

	Main operator	Type of formula	Example
	none	atomic (formula)	\perp , \top , $R(t_1,\ldots,t_n)$, $t_1=t_2$
	¬	negation	$ eg \varphi$
	\wedge	conjunction	$(\varphi \wedge \psi)$
	\vee	disjunction	$(\varphi \lor \psi)$
	\rightarrow	conditional	$(\varphi \to \psi)$
	\forall	universal (formula)	$\forall x \varphi$
	3	existential (formula)	$\exists x \varphi$

Photo Credits

Bibliography