syn.1 Main operator of a Formula

fol:syn:mai: It is often useful to talk about the last operator used in constructing a for- explanation mula φ . This operator is called the *main operator* of φ . Intuitively, it is the "outermost" operator of φ . For example, the main operator of $\neg \varphi$ is \neg , the main operator of $(\varphi \lor \psi)$ is \lor , etc.

fol:syn:mai: Definition syn.1 (Main operator). The main operator of a formula φ is def:main-opdefined as follows:

1. φ is atomic: φ has no main operator.

2. $\varphi \equiv \neg \psi$: the main operator of φ is \neg .

- 3. $\varphi \equiv (\psi \land \chi)$: the main operator of φ is \land .
- 4. $\varphi \equiv (\psi \lor \chi)$: the main operator of φ is \lor .
- 5. $\varphi \equiv (\psi \rightarrow \chi)$: the main operator of φ is \rightarrow .
- 6. $\varphi \equiv (\psi \leftrightarrow \chi)$: the main operator of φ is \leftrightarrow .
- 7. $\varphi \equiv \forall x \psi$: the main operator of φ is \forall .
- 8. $\varphi \equiv \exists x \psi$: the main operator of φ is \exists .

In each case, we intend the specific indicated occurrence of the main operator in the formula. For instance, since the formula $((\theta \to \alpha) \to (\alpha \to \theta))$ is of the form $(\psi \to \chi)$ where ψ is $(\theta \to \alpha)$ and χ is $(\alpha \to \theta)$, the second occurrence of \rightarrow is the main operator.

This is a *recursive* definition of a function which maps all non-atomic formu-explanation las to their main operator occurrence. Because of the way formulas are defined inductively, every formula φ satisfies one of the cases in Definition syn.1. This guarantees that for each non-atomic formula φ a main operator exists. Because each formula satisfies only one of these conditions, and because the smaller formulas from which φ is constructed are uniquely determined in each case, the main operator occurrence of φ is unique, and so we have defined a function.

We call formulas by the names in Table 1 depending on which symbol their main operator is.

Photo Credits

Bibliography

Main operator	Type of formula	Example
none	atomic (formula)	$\perp, \top, R(t_1, \ldots, t_n), t_1 = t_2$
_	negation	$\neg \varphi$
\wedge	$\operatorname{conjunction}$	$(\varphi \wedge \psi)$
\vee	disjunction	$(arphi \lor \psi)$
\rightarrow	conditional	$(\varphi \rightarrow \psi)$
\leftrightarrow	biconditional	$(\varphi \leftrightarrow \psi)$
\forall	universal (formula)	$\forall x arphi$
Ξ	existential (formula)	$\exists x \varphi$

Table 1: Main operator and names of formulas

fol:syn:mai: tab:main-op