Expressions of first-order logic are built up from a basic vocabulary containing variables, constant symbols, predicate symbols and sometimes function symbols. From them, together with logical connectives, quantifiers, and punctuation symbols such as parentheses and commas, terms and formulas are formed.

Informally, predicate symbols are names for properties and relations, constant symbols are names for individual objects, and function symbols are names for mappings. These, except for the identity predicate $=$, are the non-logical symbols and together make up a language. Any first-order language \mathcal{L} is determined by its non-logical symbols. In the most general case, \mathcal{L} contains infinitely many symbols of each kind.

In the general case, we make use of the following symbols in first-order logic:

1. Logical symbols
 a) Logical connectives: \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (conditional), \leftrightarrow (biconditional), \forall (universal quantifier), \exists (existential quantifier).
 b) The propositional constant for falsity \bot.
 c) The propositional constant for truth \top.
 d) The two-place identity predicate $=$.
 e) A denumerable set of variables: v_0, v_1, v_2, \ldots

2. Non-logical symbols, making up the standard language of first-order logic
 a) A denumerable set of n-place predicate symbols for each $n > 0$: $A^n_0, A^n_1, A^n_2, \ldots$
 b) A denumerable set of constant symbols: c_0, c_1, c_2, \ldots
 c) A denumerable set of n-place function symbols for each $n > 0$: $f^n_0, f^n_1, f^n_2, \ldots$

3. Punctuation marks: $($, $)$, and the comma.

Most of our definitions and results will be formulated for the full standard language of first-order logic. However, depending on the application, we may also restrict the language to only a few predicate symbols, constant symbols, and function symbols.

Example syn.1. The language \mathcal{L}_A of arithmetic contains a single two-place predicate symbol $<$, a single constant symbol 0, one one-place function symbol \prime, and two two-place function symbols $+$ and \times.

Example syn.2. The language of set theory \mathcal{L}_Z contains only the single two-place predicate symbol \in.
Example syn.3. The language of orders L_\leq contains only the two-place predicate symbol \leq.

Again, these are conventions: officially, these are just aliases, e.g., $<$, \in, and \leq are aliases for A_2^0, 0 for c_0, I for f_0^1, $+$ for f_0^2, \times for f_1^2.

You may be familiar with different terminology and symbols than the ones we use above. Logic texts (and teachers) commonly use \sim, \neg, or $!$ for “negation”, \land, \cdot, or $\&$ for “conjunction”. Commonly used symbols for the “conditional” or “implication” are \rightarrow, \Rightarrow, and \supset. Symbols for “biconditional,” “bi-implication,” or “(material) equivalence” are \leftrightarrow, \iff, and \equiv. The \bot symbol is variously called “falsity,” “falsum,” “absurdity,” or “bottom.” The \top symbol is variously called “truth,” “verum,” or “top.”

It is conventional to use lower case letters (e.g., a, b, c) from the beginning of the Latin alphabet for constant symbols (sometimes called names), and lower case letters from the end (e.g., x, y, z) for variables. Quantifiers combine with variables, e.g., x; notational variations include $\forall x$, $(\forall x)$, Πx, $\exists x$ for the universal quantifier and $\exists x$, $(\exists x)$, $(E x)$, Σx, $\forall x$ for the existential quantifier.

We might treat all the propositional operators and both quantifiers as primitive symbols of the language. We might instead choose a smaller stock of primitive symbols and treat the other logical operators as defined. “Truth functionally complete” sets of Boolean operators include $\{\neg, \lor\}$, $\{\neg, \land\}$, and $\{\neg, \rightarrow\}$—these can be combined with either quantifier for an expressively complete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke $|$ (named after Henry Sheffer), and Peirce’s arrow \downarrow, also known as Quine’s dagger. When given their usual readings of “nand” and “nor” (respectively), these operators are truth functionally complete by themselves.

Photo Credits

Bibliography