seq.1 Soundness with Identity predicate

Proposition seq.1. LK with initial sequents and rules for identity is sound.

Proof. Initial sequents of the form \(\Rightarrow t = t \) are valid, since for every structure \(\mathcal{M} \), \(\mathcal{M} \models t = t \). (Note that we assume the term \(t \) to be closed, i.e., it contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is \(= \). Then the premise is \(t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_1) \) and the conclusion is \(t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_2) \). Consider a structure \(\mathcal{M} \). We need to show that the conclusion is valid, i.e., if \(\mathcal{M} \models t_1 = t_2 \) and \(\mathcal{M} \models \Gamma \), then either \(\mathcal{M} \models \chi \) for some \(\chi \in \Delta \) or \(\mathcal{M} \models \varphi(t_2) \).

By induction hypothesis, the premise is valid. This means that if \(\mathcal{M} \models t_1 = t_2 \) and \(\mathcal{M} \models \Gamma \) either (a) for some \(\chi \in \Delta \), \(\mathcal{M} \models \chi \) or (b) \(\mathcal{M} \models \varphi(t_1) \). In case (a) we are done. Consider case (b). Let \(s \) be a variable assignment with \(s(x) = \text{Val}^\mathcal{M}(t_1) \). By ??, \(\mathcal{M}, s \models \varphi(t_1) \). Since \(s \sim_x s \), by ??, \(\mathcal{M}, s \models \varphi(x) \). since \(\mathcal{M} \models t_1 = t_2 \), we have \(\text{Val}^\mathcal{M}(t_1) = \text{Val}^\mathcal{M}(t_2) \), and hence \(s(x) = \text{Val}^\mathcal{M}(t_2) \). By applying ?? again, we also have \(\mathcal{M}, s \models \varphi(t_2) \). By ??, \(\mathcal{M} \models \varphi(t_2) \). \(\square \)

Photo Credits

Bibliography