seq.1 Rules and Derivations

For the following, let $\Gamma, \Delta, \Pi, \Lambda$ represent finite sequences of sentences.

Definition seq.1 (Sequent). A **sequent** is an expression of the form

$$\Gamma \Rightarrow \Delta$$

where Γ and Δ are finite (possibly empty) sequences of sentences of the language L. Γ is called the **antecedent**, while Δ is the **succedent**.

The intuitive idea behind a sequent is: if all of the sentences in the antecedent hold, then at least one of the sentences in the succedent holds. That is, if $\Gamma = \langle \varphi_1, \ldots, \varphi_m \rangle$ and $\Delta = \langle \psi_1, \ldots, \psi_n \rangle$, then $\Gamma \Rightarrow \Delta$ holds iff

$$(\varphi_1 \land \cdots \land \varphi_m) \rightarrow (\psi_1 \lor \cdots \lor \psi_n)$$

holds. There are two special cases: when Γ is empty and when Δ is empty. When Γ is empty, i.e., $m = 0$, $\Rightarrow \Delta$ holds iff $\psi_1 \lor \cdots \lor \psi_n$ holds. When Δ is empty, i.e., $n = 0$, $\Gamma \Rightarrow$ holds iff $\neg (\varphi_1 \land \cdots \land \varphi_m)$ does. We say a sequent is valid iff the corresponding sentence is valid.

If Γ is a sequence of sentences, we write Γ, φ for the result of appending φ to the right end of Γ (and φ, Γ for the result of appending φ to the left end of Γ). If Δ is a sequence of sentences also, then Γ, Δ is the concatenation of the two sequences.

Definition seq.2 (Initial Sequent). An **initial sequent** is a sequent of one of the following forms:

1. $\varphi \Rightarrow \varphi$
2. $\Rightarrow \top$
3. $\bot \Rightarrow$

for any sentence φ in the language.

Derivations in the sequent calculus are certain trees of sequents, where the topmost sequents are initial sequents, and if a sequent stands below one or two other sequents, it must follow correctly by a rule of inference. The rules for LK are divided into two main types: **logical** rules and **structural** rules. The logical rules are named for the main operator of the sentence containing φ and/or ψ in the lower sequent. Each one comes in two versions, one for inferring a sequent with the sentence containing the logical operator on the left, and one with the sentence on the right.

Photo Credits

Bibliography