seq.1 Quantifier Rules

Rules for \forall

$$
\frac{\varphi(t), \Gamma \Rightarrow \Delta}{\forall x \varphi(x), \Gamma \Rightarrow \Delta} \quad \forall L
$$

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(a)}{\Gamma \Rightarrow \Delta, \forall x \varphi(x)} \quad \forall R
$$

In $\forall L$, t is a closed term (i.e., one without variables). In $\forall R$, a is a constant symbol which must not occur anywhere in the lower sequent of the $\forall R$ rule. We call a the eigenvariable of the $\forall R$ inference.

Rules for \exists

$$
\frac{\varphi(a), \Gamma \Rightarrow \Delta}{\exists x \varphi(x), \Gamma \Rightarrow \Delta} \quad \exists L
$$

$$
\frac{\Gamma \Rightarrow \Delta, \varphi(t)}{\Gamma \Rightarrow \Delta, \exists x \varphi(x)} \quad \exists R
$$

Again, t is a closed term, and a is a constant symbol which does not occur in the lower sequent of the $\exists L$ rule. We call a the eigenvariable of the $\exists L$ inference.

The condition that an eigenvariable not occur in the lower sequent of the $\forall R$ or $\exists L$ inference is called the eigenvariable condition.

Recall the convention that when φ is a formula with the variable x free, we indicate this by writing $\varphi(x)$. In the same context, $\varphi(t)$ then is short for $\varphi[t/x]$. So we could also write the $\exists R$ rule as:

$$
\frac{\Gamma \Rightarrow \Delta, \varphi[t/x]}{\Gamma \Rightarrow \Delta, \exists x \varphi} \quad \exists R
$$

Note that t may already occur in φ, e.g., φ might be $P(t, x)$. Thus, inferring $\Gamma \Rightarrow \Delta, \exists x P(t, x)$ from $\Gamma \Rightarrow \Delta, P(t, t)$ is a correct application of $\exists R$—you may “replace” one or more, and not necessarily all, occurrences of t in the premise by the bound variable x. However, the eigenvariable conditions in $\forall R$ and $\exists L$ require that the constant symbol a does not occur in φ. So, you cannot correctly infer $\Gamma \Rightarrow \Delta, \forall x P(a, x)$ from $\Gamma \Rightarrow \Delta, P(a, a)$ using $\forall R$.

In $\exists R$ and $\forall L$ there are no restrictions on the term t. On the other hand, in the $\exists L$ and $\forall R$ rules, the eigenvariable condition requires that the constant symbol a does not occur anywhere outside of $\varphi(a)$ in the upper sequent. It is necessary to ensure that the system is sound, i.e., only derives sequents that are valid. Without this condition, the following would be allowed:

1We use the term “eigenvariable” even though a in the above rule is a constant symbol. This has historical reasons.
However, $\exists x \varphi(x) \Rightarrow \forall x \varphi(x)$ is not valid.

Photo Credits

Bibliography