seq.1 Derivability and the Quantifiers

Theorem seq.1. If \(c \) is a constant not occurring in \(\Gamma \) or \(\varphi(x) \) and \(\Gamma \vdash \varphi(c) \), then \(\Gamma \vdash \forall x \varphi(x) \).

Proof. Let \(\pi_0 \) be an LK-derivation of \(\Gamma_0 \Rightarrow \varphi(c) \) for some finite \(\Gamma_0 \subseteq \Gamma \). By adding a \(\forall R \) inference, we obtain a proof of \(\Gamma_0 \Rightarrow \forall x \varphi(x) \), since \(c \) does not occur in \(\Gamma \) or \(\varphi(x) \) and thus the eigenvariable condition is satisfied. \(\square \)

Proposition seq.2.

1. \(\varphi(t) \vdash \exists x \varphi(x) \).
2. \(\forall x \varphi(x) \vdash \varphi(t) \).

Proof.

1. The sequent \(\varphi(t) \Rightarrow \exists x \varphi(x) \) is derivable:

\[
\frac{\varphi(t) \Rightarrow \varphi(t)}{\varphi(t) \Rightarrow \exists x \varphi(x)} \text{ \text{ \(\exists R \)}}
\]

2. The sequent \(\forall x \varphi(x) \Rightarrow \varphi(t) \) is derivable:

\[
\frac{\varphi(t) \Rightarrow \varphi(t)}{\forall x \varphi(x) \Rightarrow \varphi(t)} \text{ \text{ \(\forall L \)}}
\]

\(\square \)

Photo Credits

Bibliography