Derivability and the Quantifiers seq.1

yield the facts about \vdash established in this section.

sec

thm:strong-generalization then $\Gamma \vdash \forall x \varphi(x)$.

fol:seq:qpr: Proposition seq.2. prop:provability-quantifiers

1.
$$\varphi(t) \vdash \exists x \varphi(x)$$
.
2. $\forall x \varphi(x) \vdash \varphi(t)$.

Proof. 1. The sequent $\varphi(t) \Rightarrow \exists x \varphi(x)$ is derivable:

$$\frac{\varphi(t) \Rightarrow \varphi(t)}{\varphi(t) \Rightarrow \exists x \, \varphi(x)} \, \exists \mathbf{R}$$

fol:seq:qpr: The completeness theorem also requires that the sequent calculus rules rules explanation

Proof. Let π_0 be an **LK**-derivation of $\Gamma_0 \Rightarrow \varphi(c)$ for some finite $\Gamma_0 \subseteq \Gamma$. By adding a $\forall \mathbf{R}$ inference, we obtain a derivation of $\Gamma_0 \Rightarrow \forall x \varphi(x)$, since c does not occur in Γ or $\varphi(x)$ and thus the eigenvariable condition is satisfied.

fol:seq:qpr: Theorem seq.1. If c is a constant not occurring in Γ or $\varphi(x)$ and $\Gamma \vdash \varphi(c)$,

2. The sequent $\forall x \varphi(x) \Rightarrow \varphi(t)$ is derivable:

$$\frac{\varphi(t) \Rightarrow \varphi(t)}{\forall x \, \varphi(x) \Rightarrow \varphi(t)} \,\forall \mathbf{L}$$

Photo Credits

Bibliography