We will now establish a number of properties of the derivability relation. They are independently interesting, but each will play a role in the proof of the completeness theorem.

Proposition seq.1. If $\Gamma \vdash \varphi$ and $\Gamma \cup \{\varphi\}$ is inconsistent, then Γ is inconsistent.

Proof. There are finite Γ_0 and $\Gamma_1 \subseteq \Gamma$ such that LK derives $\Gamma_0 \Rightarrow \varphi$ and $\varphi, \Gamma_1 \Rightarrow$. Let the LK-derivation of $\Gamma_0 \Rightarrow \varphi$ be π_0 and the LK-derivation of $\Gamma_1, \varphi \Rightarrow$ be π_1. We can then derive
\[
\begin{array}{c}
\vdots \\
\pi_0 \\
\vdots \\
\Gamma_0 \Rightarrow \varphi \\
\vdots \\
\pi_1 \\
\vdots \\
\varphi, \Gamma_1 \Rightarrow
\end{array}
\]
\[\text{Cut}\]

Since $\Gamma_0 \subseteq \Gamma$ and $\Gamma_1 \subseteq \Gamma$, $\Gamma_0 \cup \Gamma_1 \subseteq \Gamma$, hence Γ is inconsistent. \(\square\)

Proposition seq.2. $\Gamma \vdash \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ is inconsistent.

Proof. First suppose $\Gamma \vdash \varphi$, i.e., there is a derivation π_0 of $\Gamma \Rightarrow \varphi$. By adding a \neg rule, we obtain a derivation of $\neg \varphi, \Gamma \Rightarrow$, i.e., $\Gamma \cup \{\neg \varphi\}$ is inconsistent.

If $\Gamma \cup \{\neg \varphi\}$ is inconsistent, there is a derivation π_1 of $\neg \varphi, \Gamma \Rightarrow$. The following is a derivation of $\Gamma \Rightarrow \varphi$:
\[
\begin{array}{c}
\varphi \Rightarrow \varphi \\
\Rightarrow \varphi, \neg \varphi \\
\neg \varphi, \Gamma \Rightarrow \\
\vdots \\
\Gamma \Rightarrow \varphi
\end{array}
\]
\[\text{Cut}\]

\(\square\)

Problem seq.1. Prove that $\Gamma \vdash \neg \varphi$ iff $\Gamma \cup \{\varphi\}$ is inconsistent.

Proposition seq.3. If $\Gamma \vdash \varphi$ and $\neg \varphi \in \Gamma$, then Γ is inconsistent.

Proof. Suppose $\Gamma \vdash \varphi$ and $\neg \varphi \in \Gamma$. Then there is a derivation π of a sequent $\Gamma_0 \Rightarrow \varphi$. The sequent $\neg \varphi, \Gamma_0 \Rightarrow$ is also derivable:
\[
\begin{array}{c}
\vdots \\
\pi \\
\vdots \\
\Gamma_0 \Rightarrow \varphi \\
\vdots \\
\neg \varphi, \varphi \Rightarrow \\
\neg \varphi, \neg \varphi \Rightarrow \\
\vdots \\
\Gamma, \neg \varphi \Rightarrow
\end{array}
\]
\[\text{Cut}\]

Since $\neg \varphi \in \Gamma$ and $\Gamma_0 \subseteq \Gamma$, this shows that Γ is inconsistent. \(\square\)
Proposition seq.4. If \(\Gamma \cup \{ \varphi \} \) and \(\Gamma \cup \{ \neg \varphi \} \) are both inconsistent, then \(\Gamma \) is inconsistent.

Proof. There are finite sets \(\Gamma_0 \subseteq \Gamma \) and \(\Gamma_1 \subseteq \Gamma \) and LK-derivations \(\pi_0 \) and \(\pi_1 \) of \(\varphi, \Gamma_0 \Rightarrow \) and \(\neg \varphi, \Gamma_1 \Rightarrow \), respectively. We can then derive

\[
\begin{array}{c}
\vdots \\
\varphi, \Gamma_0 \Rightarrow \\
\vdots \\
\vdash \neg \varphi \text{ by R} \\
\vdash \neg \varphi, \Gamma_1 \Rightarrow \\
\vdash \Gamma_0, \Gamma_1 \Rightarrow \text{ Cut}
\end{array}
\]

Since \(\Gamma_0 \subseteq \Gamma \) and \(\Gamma_1 \subseteq \Gamma \), \(\Gamma_0 \cup \Gamma_1 \subseteq \Gamma \). Hence \(\Gamma \) is inconsistent. \(\square \)

Photo Credits

Bibliography