This section collects the definitions of the provability relation and consistency for natural deduction.

seq.1 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions (validity, entailment, satisfiability), we now define corresponding proof-theoretic notions. These are not defined by appeal to satisfaction of sentences in structures, but by appeal to the derivability or non-derivability of certain sequents. It was an important discovery that these notions coincide. That they do is the content of the soundness and completeness theorem.

Definition seq.1 (Theorems). A sentence φ is a theorem if there is a derivation in LK of the sequent $\Rightarrow \varphi$. We write $\vdash \varphi$ if φ is a theorem and $\not\vdash \varphi$ if it is not.

Definition seq.2 (Derivability). A sentence φ is derivable from a set of sentences Γ, $\Gamma \vdash \varphi$, iff there is a finite subset $\Gamma_0 \subseteq \Gamma$ and a sequence Γ_0' of the sentences in Γ_0 such that LK derives $\Gamma_0' \Rightarrow \varphi$. If φ is not derivable from Γ we write $\Gamma \not\vdash \varphi$.

Because of the contraction, weakening, and exchange rules, the order and number of sentences in Γ_0' does not matter: if a sequent $\Gamma_0' \Rightarrow \varphi$ is derivable, then so is $\Gamma_0'' \Rightarrow \varphi$ for any Γ_0'' that contains the same sentences as Γ_0'. For instance, if $\Gamma_0 = \{\psi, \chi\}$ then both $\Gamma_0' = \langle \psi, \psi, \chi \rangle$ and $\Gamma_0'' = \langle \chi, \chi, \psi \rangle$ are sequences containing just the sentences in Γ_0. If a sequent containing one is derivable, so is the other, e.g.:

\[
\begin{align*}
\vdots \\
\psi, \psi, \chi & \Rightarrow \varphi & \text{CL} \\
\psi, \chi & \Rightarrow \varphi & \text{XL} \\
\chi, \psi & \Rightarrow \varphi & \text{WL}
\end{align*}
\]

From now on we’ll say that if Γ_0 is a finite set of sentences then $\Gamma_0 \Rightarrow \varphi$ is any sequent where the antecedent is a sequence of sentences in Γ_0 and tacitly include contractions, exchanges, and weakenings if necessary.

Definition seq.3 (Consistency). A set of sentences Γ is inconsistent iff there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that LK derives $\Gamma_0 \Rightarrow \varphi$. If Γ is not inconsistent, i.e., if for every finite $\Gamma_0 \subseteq \Gamma$, LK does not derive $\Gamma_0 \Rightarrow \varphi$, we say it is consistent.

Proposition seq.4 (Reflexivity). If $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$.

proof-theoretic-notions rev. d4e99d0 (2023-10-08) by OLP / CC–BY
Proof. The initial sequent $\phi \Rightarrow \phi$ is derivable, and $\{\varphi\} \subseteq \Gamma$. \qed

Proposition seq.5 (Monotonicity). If $\Gamma \subseteq \Delta$ and $\Gamma \vdash \varphi$, then $\Delta \vdash \varphi$.

Proof. Suppose $\Gamma \vdash \varphi$, i.e., there is a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \Rightarrow \varphi$ is derivable. Since $\Gamma \subseteq \Delta$, then Γ_0 is also a finite subset of Δ. The derivation of $\Gamma_0 \Rightarrow \varphi$ thus also shows $\Delta \vdash \varphi$. \qed

Proposition seq.6 (Transitivity). If $\Gamma \vdash \varphi$ and $\{\varphi\} \cup \Delta \vdash \psi$, then $\Gamma \cup \Delta \vdash \psi$.

Proof. If $\Gamma \vdash \varphi$, there is a finite $\Gamma_0 \subseteq \Gamma$ and a derivation π_0 of $\Gamma_0 \Rightarrow \varphi$. If $\{\varphi\} \cup \Delta \vdash \psi$, then for some finite subset $\Delta_0 \subseteq \Delta$, there is a derivation π_1 of $\varphi, \Delta_0 \Rightarrow \psi$. Consider the following derivation:

\[
\begin{array}{c}
\vdots \\
\pi_0 \\
\vdots \\
\Gamma_0 \Rightarrow \varphi \\
\vdots \\
\pi_1 \\
\Gamma_0, \Delta_0 \Rightarrow \psi \\
\end{array}
\]

Cut

Since $\Gamma_0 \cup \Delta_0 \subseteq \Gamma \cup \Delta$, this shows $\Gamma \cup \Delta \vdash \psi$. \qed

Note that this means that in particular if $\Gamma \vdash \varphi$ and $\varphi \vdash \psi$, then $\Gamma \vdash \psi$. It follows also that if $\varphi_1, \ldots, \varphi_n \vdash \psi$ and $\Gamma \vdash \varphi_i$ for each i, then $\Gamma \vdash \psi$.

Proposition seq.7. Γ is inconsistent iff $\Gamma \vdash \varphi$ for every sentence φ.

Proof. Exercise. \qed

Problem seq.1. Prove Proposition seq.7

Proposition seq.8 (Compactness).

1. If $\Gamma \vdash \varphi$ then there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash \varphi$.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If $\Gamma \vdash \varphi$, then there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that the sequent $\Gamma_0 \Rightarrow \varphi$ has a derivation. Consequently, $\Gamma_0 \vdash \varphi$.

2. If Γ is inconsistent, there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that LK derives $\Gamma_0 \Rightarrow \varphi$. But then Γ_0 is a finite subset of Γ that is inconsistent. \qed

Photo Credits

Bibliography