seq.1 Derivations with Identity predicate

 $\begin{array}{c} \text{fol:seq:ide:} \\ \text{sec} \end{array}$

Derivations with identity predicate require additional initial sequents and inference rules.

Definition seq.1 (Initial sequents for =). If t is a closed term, then $\Rightarrow t = t$ is an initial sequent.

The rules for = are $(t_1 \text{ and } t_2 \text{ are closed terms})$:

$$\frac{t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_1)}{t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_2)} = \frac{t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_2)}{t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_1)} =$$

Example seq.2. If s and t are closed terms, then $s = t, \varphi(s) \vdash \varphi(t)$:

$$\frac{\varphi(s) \Rightarrow \varphi(s)}{s = t, \varphi(s) \Rightarrow \varphi(s)} \underbrace{\text{WL}}_{s = t, \varphi(s) \Rightarrow \varphi(t)} =$$

This may be familiar as the principle of substitutability of identicals, or Leibniz' Law

LK proves that = is symmetric and transitive:

$$\frac{\Rightarrow t_1 = t_1}{t_1 = t_2 \Rightarrow t_1 = t_1} \text{WL} = \frac{t_1 = t_2 \Rightarrow t_1 = t_2}{t_2 = t_3, t_1 = t_2 \Rightarrow t_1 = t_2} \text{WL} = \frac{t_2 = t_3, t_1 = t_2 \Rightarrow t_1 = t_2}{t_2 = t_3, t_1 = t_2 \Rightarrow t_1 = t_3} \text{XL}$$

In the proof on the left, the formula $x = t_1$ is our $\varphi(x)$. On the right, we take $\varphi(x)$ to be $t_1 = x$.

Problem seq.1. Give derivations of the following sequents:

1.
$$\Rightarrow \forall x \, \forall y \, ((x = y \land \varphi(x)) \rightarrow \varphi(y))$$

2.
$$\exists x \, \varphi(x) \land \forall y \, \forall z \, ((\varphi(y) \land \varphi(z)) \rightarrow y = z) \Rightarrow \exists x \, (\varphi(x) \land \forall y \, (\varphi(y) \rightarrow y = x))$$

Photo Credits

Bibliography