seq.1 Derivations with Identity predicate

fol:seq:ide: Derivations with identity predicate require additional initial sequents and inference rules.

Definition seq.1 (Initial sequents for =). If t is a closed term, then \Rightarrow t = t is an initial sequent.

The rules for = are $(t_1 \text{ and } t_2 \text{ are closed terms})$:

$$\frac{t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_1)}{t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_2)} = \frac{t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_2)}{t_1 = t_2, \Gamma \Rightarrow \Delta, \varphi(t_1)} =$$

Example seq.2. If s and t are closed terms, then $s = t, \varphi(s) \vdash \varphi(t)$:

$$\frac{\varphi(s) \Rightarrow \varphi(s)}{s = t, \varphi(s) \Rightarrow \varphi(s)} \text{WL}$$
$$=$$

This may be familiar as the principle of substitutability of identicals, or Leibniz' Law.

 $\mathbf{L}\mathbf{K}$ proves that = is symmetric and transitive:

	$t_1 = t_2 \Rightarrow t_1 = t_2$ we
$\Rightarrow t_1 = t_1$ we	$t_2 = t_3, t_1 = t_2 \implies t_1 = t_2 _$
$\overline{t_1 = t_2 \Rightarrow t_1 = t_1} \ ^{\text{WL}}_{-}$	$t_2 = t_3, t_1 = t_2 \implies t_1 = t_3 _{\mathbf{VI}}$
$\overline{t_1 = t_2 \Rightarrow t_2 = t_1} -$	$\overline{t_1 = t_2, t_2 = t_3} \Rightarrow t_1 = t_3 \text{AL}$

In the derivation on the left, the formula $x = t_1$ is our $\varphi(x)$. On the right, we take $\varphi(x)$ to be $t_1 = x$.

Problem seq.1. Give derivations of the following sequents:

1.
$$\Rightarrow \forall x \,\forall y \,((x = y \land \varphi(x)) \to \varphi(y))$$

2. $\exists x \,\varphi(x) \land \forall y \,\forall z \,((\varphi(y) \land \varphi(z)) \to y = z) \Rightarrow \exists x \,(\varphi(x) \land \forall y \,(\varphi(y) \to y = x))$

Photo Credits

Bibliography