Derivations with Identity predicate

Definitions

Definition seq.1 (Initial sequents for =). If \(t \) is a closed term, then \(\Gamma \vdash t = t \) is an initial sequent.

The rules for \(= \) are (\(t_1 \) and \(t_2 \) are closed terms):

\[
\begin{align*}
\Gamma &\vdash t_1 = t_2, \Delta, \varphi(t_1) = \\
\Gamma &\vdash t_1 = t_2, \Delta, \varphi(t_2) = \\
\end{align*}
\]

Example seq.2. If \(s \) and \(t \) are closed terms, then \(s = t, \varphi(s) \vdash \varphi(t) \):

\[
\begin{align*}
\varphi(s) &\vdash \varphi(s) \\
\Gamma &\vdash s = t, \varphi(s) \vdash \varphi(s) = \\
\Gamma &\vdash s = t, \varphi(s) \vdash \varphi(t) = \\
\end{align*}
\]

This may be familiar as the principle of substitutability of identicals, or Leibniz’ Law.

LK proves that \(= \) is symmetric and transitive:

\[
\begin{align*}
\Gamma &\vdash t_1 = t_2, \Delta, \varphi(t_1) = \\
\Gamma &\vdash t_2 = t_1, \Delta, \varphi(t_2) = \\
\end{align*}
\]

In the derivation on the left, the formula \(x = t_1 \) is our \(\varphi(x) \). On the right, we take \(\varphi(x) \) to be \(t_1 = x \).

Problem seq.1. Give derivations of the following sequents:

1. \(\Gamma \vdash \forall x \forall y ((x = y \land \varphi(x)) \rightarrow \varphi(y)) \)
2. \(\exists x \varphi(x) \land \forall y \forall z ((\varphi(y) \land \varphi(z)) \rightarrow y = z) \rightarrow \exists x (\varphi(x) \land \forall y (\varphi(y) \rightarrow y = x)) \)

Photo Credits

Bibliography

1