ntd.1 Soundness with Identity predicate fol:ntd:sid: **Proposition ntd.1.** Natural deduction with rules for = is sound. *Proof.* Any formula of the form t = t is valid, since for every structure \mathfrak{M} , $\mathfrak{M} \models t = t$. (Note that we assume the term t to be ground, i.e., it contains no variables, so variable assignments are irrelevant). Suppose the last inference in a derivation is =Elim, i.e., the derivation has the following form: $$\frac{\Gamma_{1} \qquad \Gamma_{2}}{\vdots \qquad \delta_{1} \qquad \vdots \qquad \delta_{2}}$$ $$\frac{t_{1} = t_{2} \qquad \varphi(t_{1})}{\varphi(t_{2})} = \text{Elim}$$ The premises $t_1 = t_2$ and $\varphi(t_1)$ are derived from undischarged assumptions Γ_1 and Γ_2 , respectively. We want to show that $\varphi(t_2)$ follows from $\Gamma_1 \cup \Gamma_2$. Consider a structure \mathfrak{M} with $\mathfrak{M} \models \Gamma_1 \cup \Gamma_2$. By induction hypothesis, $\mathfrak{M} \models \varphi(t_1)$ and $\mathfrak{M} \models t_1 = t_2$. Therefore, $\operatorname{Val}^{\mathfrak{M}}(t_1) = \operatorname{Val}^{\mathfrak{M}}(t_2)$. Let s be any variable assignment, and s' be the s-variant given by $s'(s) = \operatorname{Val}^{\mathfrak{M}}(t_1) = \operatorname{Val}^{\mathfrak{M}}(t_2)$. By $n, s \models \varphi(t_1)$ iff $\mathfrak{M}, s' \models \varphi(s)$ iff $\mathfrak{M}, s' \models \varphi(t_2)$. Since $\mathfrak{M} \models \varphi(t_1)$, we have $\mathfrak{M} \models \varphi(t_2)$. \square ## **Photo Credits** ## Bibliography