ntd.1 Soundness with Identity predicate

Proposition ntd.1. Natural deduction with rules for = is sound.

Proof. Any formula of the form \(t = t \) is valid, since for every structure \(\mathcal{M} \), \(\mathcal{M} \models t = t \). (Note that we assume the term \(t \) to be ground, i.e., it contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is \(=\text{Elim} \), i.e., the derivation has the following form:

\[
\begin{array}{c}
\Gamma_1 \\
\vdots \\
\delta_1 \\
\vdots \\
\delta_2 \\
\vdots \\
t_1 = t_2 \\
\varphi(t_1) \\
\hline
\varphi(t_2)
\end{array}
\text{=Elim}
\]

The premises \(t_1 = t_2 \) and \(\varphi(t_1) \) are derived from undischarged assumptions \(\Gamma_1 \) and \(\Gamma_2 \), respectively. We want to show that \(\varphi(t_2) \) follows from \(\Gamma_1 \cup \Gamma_2 \). Consider a structure \(\mathcal{M} \) with \(\mathcal{M} \models \Gamma_1 \cup \Gamma_2 \). By induction hypothesis, \(\mathcal{M} \models \varphi(t_1) \) and \(\mathcal{M} \models t_1 = t_2 \). Therefore, \(\text{Val}^\mathcal{M}(t_1) = \text{Val}^\mathcal{M}(t_2) \). Let \(s \) be any variable assignment, and \(s' \) be the \(x \)-variant given by \(s'(x) = \text{Val}^\mathcal{M}(t_1) = \text{Val}^\mathcal{M}(t_2) \). By ??, \(\mathcal{M}, s \models \varphi(t_1) \) iff \(\mathcal{M}, s' \models \varphi(x) \) iff \(\mathcal{M}, s \models \varphi(t_2) \). Since \(\mathcal{M} \models \varphi(t_1) \), we have \(\mathcal{M} \models \varphi(t_2) \). \(\square \)

Photo Credits

Bibliography