ntd.1 Soundness with Identity predicate

fol:ntd:sid: sec

Proposition ntd.1. Natural deduction with rules for = is sound.

Proof. Any formula of the form t = t is valid, since for every structure \mathfrak{M} , $\mathfrak{M} \models t = t$. (Note that we assume the term t to be closed, i.e., it contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is =Elim, i.e., the derivation has the following form:

$$\frac{\Gamma_1 \qquad \Gamma_2 \\
\vdots \\
\delta_1 \qquad \vdots \\
\delta_2 \\
\vdots \\
\frac{t_1 = t_2 \qquad \varphi(t_1)}{\varphi(t_2)} = \text{Elim}$$

The premises $t_1 = t_2$ and $\varphi(t_1)$ are derived from undischarged assumptions Γ_1 and Γ_2 , respectively. We want to show that $\varphi(t_2)$ follows from $\Gamma_1 \cup \Gamma_2$. Consider a structure \mathfrak{M} with $\mathfrak{M} \models \Gamma_1 \cup \Gamma_2$. By induction hypothesis, $\mathfrak{M} \models \varphi(t_1)$ and $\mathfrak{M} \models$ $t_1 = t_2$. Therefore, $\operatorname{Val}^{\mathfrak{M}}(t_1) = \operatorname{Val}^{\mathfrak{M}}(t_2)$. Let *s* be any variable assignment, and $m = \operatorname{Val}^{\mathfrak{M}}(t_1) = \operatorname{Val}^{\mathfrak{M}}(t_2)$. By $\mathfrak{N}, s \models \varphi(t_1)$ iff $\mathfrak{M}, s[m/x] \models \varphi(x)$ iff $\mathfrak{M}, s \models \varphi(t_2)$. Since $\mathfrak{M} \models \varphi(t_1)$, we have $\mathfrak{M} \models \varphi(t_2)$. \Box

Photo Credits

Bibliography