
ntd.1 Examples of Derivations

fol:ntd:pro:
sec

Example ntd.1. Let’s give a derivation of the sentence (ϕ ∧ ψ) → ϕ.
We begin by writing the desired conclusion at the bottom of the derivation.

(ϕ ∧ ψ) → ϕ

Next, we need to figure out what kind of inference could result in a sentence
of this form. The main operator of the conclusion is →, so we’ll try to arrive at
the conclusion using the →Intro rule. It is best to write down the assumptions
involved and label the inference rules as you progress, so it is easy to see whether
all assumptions have been discharged at the end of the proof.

[ϕ ∧ ψ]1

ϕ
1 →Intro

(ϕ ∧ ψ) → ϕ

We now need to fill in the steps from the assumption ϕ ∧ ψ to ϕ. Since we
only have one connective to deal with, ∧, we must use the ∧ elim rule. This
gives us the following proof:

[ϕ ∧ ψ]1
∧Elimϕ

1 →Intro
(ϕ ∧ ψ) → ϕ

We now have a correct derivation of (ϕ ∧ ψ) → ϕ.

Example ntd.2. Now let’s give a derivation of (¬ϕ ∨ ψ) → (ϕ→ ψ).
We begin by writing the desired conclusion at the bottom of the derivation.

(¬ϕ ∨ ψ) → (ϕ→ ψ)

To find a logical rule that could give us this conclusion, we look at the logical
connectives in the conclusion: ¬, ∨, and →. We only care at the moment about
the first occurence of → because it is the main operator of the sentence in the
end-sequent, while ¬, ∨ and the second occurence of → are inside the scope of
another connective, so we will take care of those later. We therefore start with
the →Intro rule. A correct application must look like this:

[¬ϕ ∨ ψ]1

ϕ→ ψ
1 →Intro

(¬ϕ ∨ ψ) → (ϕ→ ψ)

proving-things rev: f9d72b0 (2019-05-06) by OLP / CC–BY 1

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


This leaves us with two possibilities to continue. Either we can keep working
from the bottom up and look for another application of the →Intro rule, or we
can work from the top down and apply a ∨Elim rule. Let us apply the latter.
We will use the assumption ¬ϕ ∨ ψ as the leftmost premise of ∨Elim. For a
valid application of ∨Elim, the other two premises must be identical to the
conclusion ϕ→ ψ, but each may be derived in turn from another assumption,
namely the two disjuncts of ¬ϕ ∨ ψ. So our derivation will look like this:

[¬ϕ ∨ ψ]1

[¬ϕ]2

ϕ→ ψ

[ψ]2

ϕ→ ψ
2 ∨Elim

ϕ→ ψ
1 →Intro

(¬ϕ ∨ ψ) → (ϕ→ ψ)

In each of the two branches on the right, we want to derive ϕ→ ψ, which
is best done using →Intro.

[¬ϕ ∨ ψ]1

[¬ϕ]2, [ϕ]3

ψ
3 →Intro
ϕ→ ψ

[ψ]2, [ϕ]4

ψ
4 →Intro
ϕ→ ψ

2 ∨Elim
ϕ→ ψ

1 →Intro
(¬ϕ ∨ ψ) → (ϕ→ ψ)

For the two missing parts of the derivation, we need derivations of ψ from
¬ϕ and ϕ in the middle, and from ϕ and ψ on the left. Let’s take the former
first. ¬ϕ and ϕ are the two premises of ¬Elim:

[¬ϕ]2 [ϕ]3
¬Elim⊥

ψ

By using ⊥I , we can obtain ψ as a conclusion and complete the branch.

[¬ϕ ∨ ψ]1

[¬ϕ]2 [ϕ]3
⊥Intro⊥ ⊥Iψ

3 →Intro
ϕ→ ψ

[ψ]2, [ϕ]4

ψ
4 →Intro
ϕ→ ψ

2 ∨Elim
ϕ→ ψ

1 →Intro
(¬ϕ ∨ ψ) → (ϕ→ ψ)

2 proving-things rev: f9d72b0 (2019-05-06) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Let’s now look at the rightmost branch. Here it’s important to realize
that the definition of derivation allows assumptions to be discharged but does
not require them to be. In other words, if we can derive ψ from one of the
assumptions ϕ and ψ without using the other, that’s ok. And to derive ψ
from ψ is trivial: ψ by itself is such a derivation, and no inferences are needed.
So we can simply delete the assumtion ϕ.

[¬ϕ ∨ ψ]1

[¬ϕ]2 [ϕ]3
¬Elim⊥ ⊥Iψ

3 →Intro
ϕ→ ψ

[ψ]2
→Intro

ϕ→ ψ
2 ∨Elim

ϕ→ ψ
1 →Intro

(¬ϕ ∨ ψ) → (ϕ→ ψ)

Note that in the finished derivation, the rightmost →Intro inference does not
actually discharge any assumptions.

Example ntd.3. So far we have not needed the ⊥C rule. It is special in
that it allows us to discharge an assumption that isn’t a sub-formula of the
conclusion of the rule. It is closely related to the ⊥I rule. In fact, the ⊥I rule
is a special case of the ⊥C rule—there is a logic called “intuitionistic logic” in
which only ⊥I is allowed. The ⊥C rule is a last resort when nothing else works.
For instance, suppose we want to derive ϕ ∨ ¬ϕ. Our usual strategy would be
to attempt to derive ϕ ∨ ¬ϕ using ∨Intro. But this would require us to derive
either ϕ or ¬ϕ from no assumptions, and this can’t be done. ⊥C to the rescue!

[¬(ϕ ∨ ¬ϕ)]1

⊥
1 ⊥Cϕ ∨ ¬ϕ

Now we’re looking for a derivation of ⊥ from ¬(ϕ ∨ ¬ϕ). Since ⊥ is the
conclusion of ¬Elim we might try that:

[¬(ϕ ∨ ¬ϕ)]1

¬ϕ

[¬(ϕ ∨ ¬ϕ)]1

ϕ
¬Elim⊥

1 ⊥Cϕ ∨ ¬ϕ

Our strategy for finding a derivation of ¬ϕ calls for an application of ¬Intro:

proving-things rev: f9d72b0 (2019-05-06) by OLP / CC–BY 3

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


[¬(ϕ ∨ ¬ϕ)]1, [ϕ]2

⊥
2 ¬Intro¬ϕ

[¬(ϕ ∨ ¬ϕ)]1

ϕ
¬Elim⊥

1 ⊥Cϕ ∨ ¬ϕ

Here, we can get ⊥ easily by applying ¬Elim to the assumption ¬(ϕ∨¬ϕ) and
ϕ ∨ ¬ϕ which follows from our new assumption ϕ by ∨Intro:

[¬(ϕ ∨ ¬ϕ)]1
[ϕ]2

∨Introϕ ∨ ¬ϕ
¬Elim⊥

2 ¬Intro¬ϕ

[¬(ϕ ∨ ¬ϕ)]1

ϕ
¬Elim⊥

1 ⊥Cϕ ∨ ¬ϕ

On the right side we use the same strategy, except we get ϕ by ⊥C :

[¬(ϕ ∨ ¬ϕ)]1
[ϕ]2

∨Introϕ ∨ ¬ϕ
¬Elim⊥

2 ¬Intro¬ϕ

[¬(ϕ ∨ ¬ϕ)]1
[¬ϕ]3

∨Introϕ ∨ ¬ϕ
¬Elim⊥

3 ⊥Cϕ
¬Elim⊥

1 ⊥Cϕ ∨ ¬ϕ

Problem ntd.1. Give derivations of the following:

1. ¬(ϕ→ ψ) → (ϕ ∧ ¬ψ)

2. (ϕ→ χ) ∨ (ψ→ χ) from the assumption (ϕ ∧ ψ) → χ

Photo Credits

Bibliography

4


	Examples of Derivations
	Photo Credits
	Bibliography

