The completeness theorem also requires that the natural deduction rules yield the facts about \vdash established in this section.

Theorem ntd.1. If c is a constant not occurring in Γ or $\varphi(x)$ and $\Gamma \vdash \varphi(c)$, then $\Gamma \vdash \forall x \varphi(x)$.

Proof. Let δ be a derivation of $\varphi(c)$ from Γ. By adding a \forallIntro inference, we obtain a derivation of $\forall x \varphi(x)$. Since c does not occur in Γ or $\varphi(x)$, the eigenvariable condition is satisfied. \hfill \square

Proposition ntd.2.

1. $\varphi(t) \vdash \exists x \varphi(x)$.
2. $\forall x \varphi(x) \vdash \varphi(t)$.

Proof. 1. The following is a derivation of $\exists x \varphi(x)$ from $\varphi(t)$:

$$
\frac{\varphi(t)}{\exists x \varphi(x)} \exists\text{Intro}
$$

2. The following is a derivation of $\varphi(t)$ from $\forall x \varphi(x)$:

$$
\frac{\forall x \varphi(x)}{\varphi(t)} \forall\text{Elim}
$$

Photo Credits

Bibliography