We’ve said what an assumption is, and we’ve given the rules of inference. Derivations in natural deduction are inductively generated from these: each derivation either is an assumption on its own, or consists of one, two, or three derivations followed by a correct inference.

Definition ntd.1 (Derivation). A *derivation* of a sentence φ from assumptions Γ is a tree of sentences satisfying the following conditions:

1. The topmost sentences of the tree are either in Γ or are discharged by an inference in the tree.
2. The bottommost sentence of the tree is φ.
3. Every sentence in the tree except φ is a premise of a correct application of an inference rule whose conclusion stands directly below that sentence in the tree.

We then say that φ is the conclusion of the derivation and that φ is derivable from Γ.

Example ntd.2. Every assumption on its own is a derivation. So, e.g., χ by itself is a derivation, and so is θ by itself. We can obtain a new derivation from these by applying, say, the \land Intro rule,

$$
\frac{\varphi \quad \psi}{\varphi \land \psi} \land\text{Intro}
$$

These rules are meant to be general: we can replace the φ and ψ in it with any sentences, e.g., by χ and θ. Then the conclusion would be $\chi \land \theta$, and so

$$
\frac{\chi \quad \theta}{\chi \land \theta} \land\text{Intro}
$$

is a correct derivation. Of course, we can also switch the assumptions, so that θ plays the role of φ and χ that of ψ. Thus,

$$
\frac{\theta \quad \chi}{\theta \land \chi} \land\text{Intro}
$$

is also a correct derivation.

We can now apply another rule, say, \rightarrow Intro, which allows us to conclude a conditional and allows us to discharge any assumption that is identical to the conclusion of that conditional. So both of the following would be correct derivations:

$$
\frac{\chi \land \theta}{\chi \rightarrow (\chi \land \theta)} \rightarrow\text{Intro}
\frac{\theta}{\chi \rightarrow (\chi \land \theta)} \rightarrow\text{Intro}
\frac{\chi \land \theta}{\theta \rightarrow (\chi \land \theta)} \rightarrow\text{Intro}
$$