mat.1 Expressing the Size of Structures

There are some properties of structures we can express even without using the non-logical symbols of a language. For instance, there are sentences which are true in a structure iff the domain of the structure has at least, at most, or exactly a certain number \(n \) of elements.

Proposition mat.1. The sentence

\[
\varphi \geq n \equiv \exists x_1 \exists x_2 \ldots \exists x_n \ (x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \land \ldots \land x_1 \neq x_n \land \nonumber \\
x_2 \neq x_3 \land x_2 \neq x_4 \land \ldots \land x_2 \neq x_n \land
onumber \\
\vdots \nonumber \\
x_{n-1} \neq x_n)
\]

is true in a structure \(M \) iff \(|M| \) contains at least \(n \) elements. Consequently, \(M \models \neg \varphi \geq n+1 \) iff \(|M| \) contains at most \(n \) elements.

Proposition mat.2. The sentence

\[
\varphi = n \equiv \exists x_1 \exists x_2 \ldots \exists x_n \ (x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \land \ldots \land x_1 \neq x_n \land
onumber \\
x_2 \neq x_3 \land x_2 \neq x_4 \land \ldots \land x_2 \neq x_n \land
onumber \\
\vdots
onumber \\
x_{n-1} \neq x_n \land
\forall y (y = x_1 \lor \ldots y = x_n) \ldots)
\]

is true in a structure \(M \) iff \(|M| \) contains exactly \(n \) elements.

Proposition mat.3. A structure is infinite iff it is a model of

\[\{\varphi \geq 1, \varphi \geq 2, \varphi \geq 3, \ldots \}\]

There is no single purely logical sentence which is true in \(M \) iff \(|M| \) is infinite. However, one can give sentences with non-logical predicate symbols which only have infinite models (although not every infinite structure is a model of them). The property of being a finite structure, and the property of being a non-enumerable structure cannot even be expressed with an infinite set of sentences. These facts follow from the compactness and Löwenheim-Skolem theorems.

Photo Credits

Bibliography