

1. Satisfaction

We can already skip ahead to the semantics of first-order logic once we know what formulas are: here, the basic definition is that of a structure. For our simple language, a structure M has just three components: a non-empty set $|M|$ called the domain, what a picks out in M, and what P is true of in M. The object picked out by a is denoted a^M and the set of things P is true of by P^M. A structure M consists of just these three things: $|M|$, $a^M \in |M|$ and $P^M \subseteq |M|$. The general case will be more complicated, since there will be many predicate symbols and constant symbols, the constant symbols can have more than one place, and there will also be function symbols.

This is enough to give a definition of satisfaction for formulas that don’t contain variables. The idea is to give an inductive definition that mirrors the way we have defined formulas. We specify when an atomic formula is satisfied in M, and then when, e.g., $\neg \varphi$ is satisfied in M on the basis of whether or not φ is satisfied in M. E.g., we could define:

1. $P(a)$ is satisfied in M iff $a^M \in P^M$.
2. $\neg \varphi$ is satisfied in M iff φ is not satisfied in M.
3. $(\varphi \land \psi)$ is satisfied in M iff φ is satisfied in M, and ψ is satisfied in M as well.

Let’s say that $|M| = \{0, 1, 2\}$, $a^M = 1$, and $P^M = \{1, 2\}$. This definition would tell us that $P(a)$ is satisfied in M (since $a^M = 1 \in \{1, 2\} = P^M$). It tells us further that $\neg P(a)$ is not satisfied in M, and that in turn that $\neg \neg P(a)$ is and $(\neg P(a) \land P(a))$ is not satisfied, and so on.

The trouble comes when we want to give a definition for the quantifiers: we’d like to say something like, “$\exists v_0 P(v_0)$ is satisfied iff $P(v_0)$ is satisfied.” But the structure M doesn’t tell us what to do about variables. What we actually want to say is that $P(v_0)$ is satisfied for some value of v_0. To make this precise we need a way to assign elements of $|M|$ not just to a but also to v_0. To this end, we introduce variable assignments. A variable assignment is simply a function s that maps variables to elements of $|M|$ (in our example, to one of 1, 2, or 3). Since we don’t know beforehand which variables might appear in a formula we can’t limit which variables s assigns values to. The simple solution is to require that s assigns values to all variables v_0, v_1, …

We’ll just use the ones we need.

Instead of defining satisfaction of formulas just relative to a structure, we’ll define it relative to a structure M and a variable assignment s, and write $M, s \models \varphi$ for short. Our definition will now include an additional clause to deal with atomic formulas containing variables:

1. $M, s \models P(a)$ iff $a^M \in P^M$.
2. $M, s \models P(v_i)$ iff $s(v_i) \in P^M$.
3. $M, s \models \neg \varphi$ iff not $M, s \models \varphi$.

satisfaction rev. 788b9aa (2022-03-22) by OLP / CC–BY
4. \(M, s \models (\varphi \land \psi) \) iff \(M, s \models \varphi \) and \(M, s \models \psi \).

Ok, this solves one problem: we can now say when \(M \) satisfies \(P(v_0) \) for the value \(s(v_0) \). To get the definition right for \(\exists v_0 P(v_0) \) we have to do one more thing: We want to have that \(M, s \models \exists v_0 P(v_0) \) iff \(M, s' \models P(v_0) \) for some way \(s' \) of assigning a value to \(v_0 \). But the value assigned to \(v_0 \) does not necessarily have to be the value that \(s(v_0) \) picks out. We’ll introduce a notation for that: if \(m \in \mathcal{M} \), then we let \(s[m/v_0] \) be the assignment that is just like \(s \) (for all variables other than \(v_0 \)), except to \(v_0 \) it assigns \(m \). Now our definition can be:

5. \(M, s \models \exists v_i \varphi \) iff \(M, s[m/v_i] \models \varphi \) for some \(m \in \mathcal{M} \).

Does it work out? Let’s say we let \(s(v_i) = 0 \) for all \(i \in \mathbb{N} \). \(M, s \models \exists v_0 P(v_0) \) iff there is an \(m \in \mathcal{M} \) so that \(M, s[m/v_0] \models P(v_0) \). And there is: we can choose \(m = 1 \) or \(m = 2 \). Note that this is true even if the value \(s(v_0) \) assigned to \(v_0 \) by \(s \) itself—in this case, 0—doesn’t do the job. We have \(M, s[1/v_0] \models P(v_0) \) but not \(M, s \models P(v_0) \).

If this looks confusing and cumbersome: it is. But the added complexity is required to give a precise, inductive definition of satisfaction for all formulas, and we need something like it to precisely define the semantic notions. There are other ways of doing it, but they are all equally (in)elegant.

Photo Credits

Bibliography