Chapter udf

Introduction to First-Order Logic

int.1 First-Order Logic

You are probably familiar with first-order logic from your first introduction to formal logic. You may know it as “quantificational logic” or “predicate logic.” First-order logic, first of all, is a formal language. That means, it has a certain vocabulary, and its expressions are strings from this vocabulary. But not every string is permitted. There are different kinds of permitted expressions: terms, formulas, and sentences. We are mainly interested in sentences of first-order logic: they provide us with a formal analogue of sentences of English, and about them we can ask the questions a logician typically is interested in. For instance:

- Does ψ follow from φ logically?
- Is φ logically true, logically false, or contingent?
- Are φ and ψ equivalent?

These questions are primarily questions about the “meaning” of sentences of first-order logic. For instance, a philosopher would analyze the question of whether ψ follows logically from φ as asking: is there a case where φ is true but ψ is false (ψ doesn’t follow from φ), or does every case that makes φ true also make ψ true (ψ does follow from φ)? But we haven’t been told yet what a “case” is—that is the job of semantics. The semantics of first-order logic provides a mathematically precise model of the philosopher’s intuitive idea of “case,” and also—and this is important—of what it is for a sentence φ to be true in a case. We call the mathematically precise model that we will develop a structure. The relation which makes “true in” precise, is called the relation of satisfaction. So what we will define is “φ is satisfied in \mathfrak{M}” (in symbols: $\mathfrak{M} \models \varphi$) for sentences φ and structures \mathfrak{M}. Once this is done, we can also give precise

1In fact, we more or less assume you are! If you’re not, you could review a more elementary textbook, such as forall x (Magnus et al., 2021).
definitions of the other semantical terms such as “follows from” or “is logically true.” These definitions will make it possible to settle, again with mathematical precision, whether, e.g., \(\forall x (\varphi(x) \rightarrow \psi(x)) \), \(\exists x \varphi(x) \models \exists x \psi(x) \). The answer will, of course, be “yes.” If you’ve already been trained to symbolize sentences of English in first-order logic, you will recognize this as, e.g., the symbolizations of, say, “All ants are insects, there are ants, therefore there are insects.” That is obviously a valid argument, and so our mathematical model of “follows from” for our formal language should give the same answer.

Another topic you probably remember from your first introduction to formal logic is that there are derivations. If you have taken a first formal logic course, your instructor will have made you practice finding such derivations, perhaps even a derivation that shows that the above entailment holds. There are many different ways to give derivations: you may have done something called “natural deduction” or “truth trees,” but there are many others. The purpose of derivation systems is to provide tools using which the logicians’ questions above can be answered: e.g., a natural deduction derivation in which \(\forall x (\varphi(x) \rightarrow \psi(x)) \) and \(\exists x \varphi(x) \) are premises and \(\exists x \psi(x) \) is the conclusion (last line) verifies that \(\exists x \psi(x) \) logically follows from \(\forall x (\varphi(x) \rightarrow \psi(x)) \) and \(\exists x \varphi(x) \).

But why is that? On the face of it, derivation systems have nothing to do with semantics: giving a formal derivation merely involves arranging symbols in certain rule-governed ways; they don’t mention “cases” or “true in” at all. The connection between derivation systems and semantics has to be established by a meta-logical investigation. What’s needed is a mathematical proof, e.g., that a formal derivation of \(\exists x \psi(x) \) from premises \(\forall x (\varphi(x) \rightarrow \psi(x)) \) and \(\exists x \varphi(x) \) is possible, if, and only if, \(\forall x (\varphi(x) \rightarrow \psi(x)) \) and \(\exists x \varphi(x) \) together entails \(\exists x \psi(x) \). Before this can be done, however, a lot of painstaking work has to be carried out to get the definitions of syntax and semantics correct.

int.2 Syntax

We first must make precise what strings of symbols count as sentences of first-order logic. We’ll do this later; for now we’ll just proceed by example. The basic building blocks—the vocabulary—of first-order logic divides into two parts. The first part is the symbols we use to say specific things or to pick out specific things. We pick out things using constant symbols, and we say stuff about the things we pick out using predicate symbols. E.g., we might use \(a \) as a constant symbol to pick out a single thing, and then say something about it using the sentence \(P(a) \). If you have meanings for “\(a \)” and “\(P \)” in mind, you can read \(P(a) \) as a sentence of English (and you probably have done so when you first learned formal logic). Once you have such simple sentences of first-order logic, you can build more complex ones using the second part of the vocabulary: the logical symbols (connectives and quantifiers). So, for instance, we can form expressions like \((P(a) \land Q(b)) \) or \(\exists x P(x) \).

In order to provide the precise definitions of semantics and the rules of our derivation systems required for rigorous meta-logical study, we first of all
have to give a precise definition of what counts as a sentence of first-order logic. The basic idea is easy enough to understand: there are some simple sentences we can form from just predicate symbols and constant symbols, such as \(P(a) \). And then from these we form more complex ones using the connectives and quantifiers. But what exactly are the rules by which we are allowed to form more complex sentences? These must be specified, otherwise we have not defined “sentence of first-order logic” precisely enough. There are a few issues. The first one is to get the right strings to count as sentences. The second one is to do this in such a way that we can give mathematical proofs about all sentences. Finally, we’ll have to also give precise definitions of some rudimentary operations with sentences, such as “replace every \(x \) in \(\varphi \) by \(b \).” The trouble is that the quantifiers and variables we have in first-order logic make it not entirely obvious how this should be done. E.g., should \(\exists x P(a) \) count as a sentence? What about \(\exists x \exists x P(x) \)? What should the result of “replace \(x \) by \(b \) in \((P(x) \land \exists x P(x)) \)” be?

int.3 Formulas

Here is the approach we will use to rigorously specify sentences of first-order logic and to deal with the issues arising from the use of variables. We first define a different set of expressions: formulas. Once we’ve done that, we can consider the role variables play in them—and on the basis of some other ideas, namely those of “free” and “bound” variables, we can define what a sentence is (namely, a formula without free variables). We do this not just because it makes the definition of “sentence” more manageable, but also because it will be crucial to the way we define the semantic notion of satisfaction.

Let’s define “formula” for a simple first-order language, one containing only a single predicate symbol \(P \) and a single constant symbol \(a \), and only the logical symbols \(\neg \), \(\land \), and \(\exists \). Our full definitions will be much more general: we’ll allow infinitely many predicate symbols and constant symbols. In fact, we will also consider function symbols which can be combined with constant symbols and variables to form “terms.” For now, \(a \) and the variables will be our only terms. We do need infinitely many variables. We’ll officially use the symbols \(v_0, v_1, \ldots \), as variables.

Definition int.1. The set of formulas \(\text{Frm} \) is defined as follows:

1. \(P(a) \) and \(P(v_i) \) are formulas \((i \in \mathbb{N})\).
2. If \(\varphi \) is a formula, then \(\neg \varphi \) is formula.
3. If \(\varphi \) and \(\psi \) are formulas, then \((\varphi \land \psi) \) is a formula.
4. If \(\varphi \) is a formula and \(x \) is a variable, then \(\exists x \varphi \) is a formula.
5. Nothing else is a formula.
(1) tell us that $P(a)$ and $P(v_i)$ are formulas, for any $i \in \mathbb{N}$. These are the so-called atomic formulas. They give us something to start from. The other clauses give us ways of forming new formulas from ones we have already formed. So for instance, we get that $\neg P(v_2)$ is a formula, since $P(v_2)$ is already a formula by (1), and then we get that $\exists v_2 \neg P(v_2)$ is another formula, and so on. (5) tells us that only strings we can form in this way count as formulas. In particular, $\exists v_0 P(a)$ and $\exists v_0 \exists v_0 P(a)$ do count as formulas, and $(\neg P(a))$ does not.

This way of defining formulas is called an inductive definition, and it allows us to prove things about formulas using a version of proof by induction called structural induction. These are discussed in a general way in ?? and ??, which you should review before delving into the proofs later on. Basically, the idea is that if you want to give a proof that something is true for all formulas you show first that it is true for the atomic formulas, and then that if it’s true for any formula φ (and ψ), it’s also true for $\neg \varphi$, $(\varphi \land \psi)$, and $\exists x \varphi$. For instance, this proves that it’s true for $\exists v_2 \neg P(v_2)$: from the first part you know that it’s true for the atomic formula $P(v_2)$. Then you get that it’s true for $\neg P(v_2)$ by the second part, and then again that it’s true for $\exists v_2 \neg P(v_2)$ itself. Since all formulas are inductively generated from atomic formulas, this works for any of them.

int.4 Satisfaction

We can already skip ahead to the semantics of first-order logic once we know what formulas are: here, the basic definition is that of a structure. For our simple language, a structure \mathcal{M} has just three components: a non-empty set $|\mathcal{M}|$ called the domain, what a picks out in \mathcal{M}, and what P is true of in \mathcal{M}. The object picked out by a is denoted $a^{|\mathcal{M}|}$ and the set of things P is true of by $P^{|\mathcal{M}|}$. A structure \mathcal{M} consists of just these three things: $|\mathcal{M}|$, $a^{|\mathcal{M}|} \in |\mathcal{M}|$ and $P^{|\mathcal{M}|} \subseteq |\mathcal{M}|$. The general case will be more complicated, since there will be many predicate symbols and constant symbols, the constant symbols can have more than one place, and there will also be function symbols.

This is enough to give a definition of satisfaction for formulas that don’t contain variables. The idea is to give an inductive definition that mirrors the way we have defined formulas. We specify when an atomic formula is satisfied in \mathcal{M}, and then when, e.g., $\neg \varphi$ is satisfied in \mathcal{M} on the basis of whether or not φ is satisfied in \mathcal{M}. E.g., we could define:

1. $P(a)$ is satisfied in \mathcal{M} iff $a^{|\mathcal{M}|} \in P^{|\mathcal{M}|}$.
2. $\neg \varphi$ is satisfied in \mathcal{M} iff φ is not satisfied in \mathcal{M}.
3. $(\varphi \land \psi)$ is satisfied in \mathcal{M} iff φ is satisfied in \mathcal{M}, and ψ is satisfied in \mathcal{M} as well.

Let’s say that $|\mathcal{M}| = \{0, 1, 2\}$, $a^{|\mathcal{M}|} = 1$, and $P^{|\mathcal{M}|} = \{1, 2\}$. This definition would tell us that $P(a)$ is satisfied in \mathcal{M} (since $a^{|\mathcal{M}|} = 1 \in \{1, 2\} = P^{|\mathcal{M}|}$). It tells us
further that $\neg P(a)$ is not satisfied in \mathcal{M}, and that in turn that $\neg\neg P(a)$ is and $(\neg P(a) \land P(a))$ is not satisfied, and so on.

The trouble comes when we want to give a definition for the quantifiers: we’d like to say something like, “$\exists v_0 P(v_0)$ is satisfied iff $P(v_0)$ is satisfied.” But the structure \mathcal{M} doesn’t tell us what to do about variables. What we actually want to say is that $P(v_0)$ is satisfied for some value of v_0. To make this precise we need a way to assign elements of $|\mathcal{M}|$ not just to a but also to v_0. To this end, we introduce variable assignments. A variable assignment is simply a function s that maps variables to elements of $|\mathcal{M}|$ (in our example, to one of 1, 2, or 3). Since we don’t know beforehand which variables might appear in a formula we can’t limit which variables s assigns values to. The simple solution is to require that s assigns values to all variables v_0, v_1, \ldots. We’ll just use only the ones we need.

Instead of defining satisfaction of formulas just relative to a structure, we’ll define it relative to a structure \mathcal{M} and a variable assignment s, and write $\mathcal{M}, s \models \varphi$ for short. Our definition will now include an additional clause to deal with atomic formulas containing variables:

1. $\mathcal{M}, s \models P(a)$ iff $a^{\mathcal{M}} \in P^{\mathcal{M}}$.
2. $\mathcal{M}, s \models P(v_i)$ iff $s(v_i) \in P^{\mathcal{M}}$.
3. $\mathcal{M}, s \models \neg \varphi$ iff not $\mathcal{M}, s \models \varphi$.
4. $\mathcal{M}, s \models (\varphi \land \psi)$ iff $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, s \models \psi$.

Ok, this solves one problem: we can now say when \mathcal{M} satisfies $P(v_0)$ for the value $s(v_0)$. To get the definition right for $\exists v_0 P(v_0)$ we have to do one more thing: We want to have that $\mathcal{M}, s \models \exists v_0 P(v_0)$ iff $\mathcal{M}, s' \models P(v_0)$ for some way s' of assigning a value to v_0. But the value assigned to v_0 does not necessarily have to be the value that $s(v_0)$ picks out. We’ll introduce a notation for that: if $m \in |\mathcal{M}|$, then we let $s[m/v_0]$ be the assignment that is just like s (for all variables other than v_0), except to v_0 it assigns m. Now our definition can be:

5. $\mathcal{M}, s \models \exists v_i \varphi$ iff $\mathcal{M}, s[m/v_i] \models \varphi$ for some $m \in |\mathcal{M}|$.

Does it work out? Let’s say we let $s(v_i) = 0$ for all $i \in \mathbb{N}$. $\mathcal{M}, s \models \exists v_0 P(v_0)$ iff there is an $m \in |\mathcal{M}|$ so that $\mathcal{M}, s[m/v_0] \models P(v_0)$. And there is: we can choose $m = 1$ or $m = 2$. Note that this is true even if the value $s(v_0)$ assigned to v_0 by s itself—in this case, 0—doesn’t do the job. We have $\mathcal{M}, s[1/v_0] \models P(v_0)$ but not $\mathcal{M}, s \models P(v_0)$.

If this looks confusing and cumbersome: it is. But the added complexity is required to give a precise, inductive definition of satisfaction for all formulas, and we need something like it to precisely define the semantic notions. There are other ways of doing it, but they are all equally (in)elegant.
int.5 Sentences

Ok, now we have a (sketch of a) definition of satisfaction (“true in”) for structures and formulas. But it needs this additional bit—a variable assignment—and what we wanted is a definition of sentences. How do we get rid of assignments, and what are sentences?

You probably remember a discussion in your first introduction to formal logic about the relation between variables and quantifiers. A quantifier is always followed by a variable, and then in the part of the sentence to which that quantifier applies (its “scope”), we understand that the variable is “bound” by that quantifier. In formulas it was not required that every variable has a matching quantifier, and variables without matching quantifiers are “free” or “unbound.” We will take sentences to be all those formulas that have no free variables.

Again, the intuitive idea of when an occurrence of a variable in a formula φ is bound, which quantifier binds it, and when it is free, is not difficult to get. You may have learned a method for testing this, perhaps involving counting parentheses. We have to insist on a precise definition—and because we have defined formulas by induction, we can give a definition of the free and bound occurrences of a variable x in a formula φ also by induction. E.g., it might look like this for our simplified language:

1. If φ is atomic, all occurrences of x in it are free (that is, the occurrence of x in $P(x)$ is free).

2. If φ is of the form $\neg \psi$, then an occurrence of x in $\neg \psi$ is free iff the corresponding occurrence of x is free in ψ (that is, the free occurrences of variables in ψ are exactly the corresponding occurrences in $\neg \psi$).

3. If φ is of the form $(\psi \land \chi)$, then an occurrence of x in $(\psi \land \chi)$ is free iff the corresponding occurrence of x is free in ψ or in χ.

4. If φ is of the form $\exists x \psi$, then no occurrence of x in φ is free; if it is of the form $\exists y \psi$ where y is a different variable than x, then an occurrence of x in $\exists y \psi$ is free iff the corresponding occurrence of x is free in ψ.

Once we have a precise definition of free and bound occurrences of variables, we can simply say: a sentence is any formula without free occurrences of variables.

int.6 Semantic Notions

We mentioned above that when we consider whether $\mathcal{M}, s \models \varphi$ holds, we (for convenience) let s assign values to all variables, but only the values it assigns to variables in φ are used. In fact, it’s only the values of free variables in φ that matter. Of course, because we’re careful, we are going to prove this fact. Since sentences have no free variables, s doesn’t matter at all when it comes to
whether or not they are satisfied in a structure. So, when \(\varphi \) is a sentence we can define \(M \vDash \varphi \) to mean “\(M, s \vDash \varphi \) for all \(s \),” which as it happens is true iff \(M, s \vDash \varphi \) for at least one \(s \). We need to introduce variable assignments to get a working definition of satisfaction for formulas, but for sentences, satisfaction is independent of the variable assignments.

Once we have a definition of “\(M \vDash \varphi \),” we know what “case” and “true in” mean as far as sentences of first-order logic are concerned. On the basis of the definition of \(M \vDash \varphi \) for sentences we can then define the basic semantic notions of validity, entailment, and satisfiability. A sentence is valid, \(\vDash \varphi \), if every structure satisfies it. It is entailed by a set of sentences, \(\Gamma \vDash \varphi \), if every structure that satisfies all the sentences in \(\Gamma \) also satisfies \(\varphi \). And a set of sentences is satisfiable if some structure satisfies all sentences in it at the same time.

Because formulas are inductively defined, and satisfaction is in turn defined by induction on the structure of formulas, we can use induction to prove properties of our semantics and to relate the semantic notions defined. We’ll collect and prove some of these properties, partly because they are individually interesting, but mainly because many of them will come in handy when we go on to investigate the relation between semantics and derivation systems. In order to do so, we’ll also have to define (precisely, i.e., by induction) some syntactic notions and operations we haven’t mentioned yet.

int.7 Substitution

We’ll discuss an example to illustrate how things hang together, and how the development of syntax and semantics lays the foundation for our more advanced investigations later. Our derivation systems should let us derive \(P(a) \) from \(\forall v_0 P(v_0) \). Maybe we even want to state this as a rule of inference. However, to do so, we must be able to state it in the most general terms: not just for \(P \), \(a \), and \(v_0 \), but for any formula \(\varphi \), and term \(t \), and variable \(x \). (Recall that constant symbols are terms, but we’ll consider also more complicated terms built from constant symbols and function symbols.) So we want to be able to say something like, “whenever you have derived \(\forall x \varphi(x) \) you are justified in inferring \(\varphi(t) \)—the result of removing \(\forall x \) and replacing \(x \) by \(t \).” But what exactly does “replacing \(x \) by \(t \)” mean? What is the relation between \(\varphi(x) \) and \(\varphi(t) \)? Does this always work?

To make this precise, we define the operation of substitution. Substitution is actually tricky, because we can’t just replace all \(x \)’s in \(\varphi \) by \(t \), and not every \(t \) can be substituted for any \(x \). We’ll deal with this, again, using inductive definitions. But once this is done, specifying an inference rule as “infer \(\varphi(t) \) from \(\forall x \varphi(x) \)” becomes a precise definition. Moreover, we’ll be able to show that this is a good inference rule in the sense that \(\forall x \varphi(x) \) entails \(\varphi(t) \). But to prove this, we have to again prove something that may at first glance prompt you to ask “why are we doing this?” That \(\forall x \varphi(x) \) entails \(\varphi(t) \) relies on the fact that whether or not \(M \vDash \varphi(t) \) holds depends only on the value of the term \(t \),
i.e., if we let \(m \) be whatever element of \(|M| \) is picked out by \(t \), then \(M, s \models \varphi(t) \) iff \(M, s[m/x] \models \varphi(x) \). This holds even when \(t \) contains variables, but we’ll have to be careful with how exactly we state the result.

int.8 Models and Theories

Once we’ve defined the syntax and semantics of first-order logic, we can get to work investigating the properties of structures, of the semantic notions, we can define derivation systems, and investigate those. For a set of sentences, we can ask: what structures make all the sentences in that set true? Given a set of sentences \(\Gamma \), a structure \(M \) that satisfies them is called a model of \(\Gamma \). We might start from \(\Gamma \) and try find its models—what do they look like? How big or small do they have to be? But we might also start with a single structure or collection of structures and ask: what sentences are true in them? Are there sentences that characterize these structures in the sense that they, and only they, are true in them? These kinds of questions are the domain of model theory. They also underlie the axiomatic method: describing a collection of structures by a set of sentences, the axioms of a theory. This is made possible by the observation that exactly those sentences entailed in first-order logic by the axioms are true in all models of the axioms.

As a very simple example, consider preorders. A preorder is a relation \(R \) on some set \(A \) which is both reflexive and transitive. A set \(A \) with a two-place relation \(R \subseteq A \times A \) on it is exactly what we would need to give a structure for a first-order language with a single two-place relation symbol \(P \): we would set \(|M| = A \) and \(P^M = R \). Since \(R \) is a preorder, it is reflexive and transitive, and we can find a set \(\Gamma \) of sentences of first-order logic that say this:

\[
\forall v_0 P(v_0, v_0) \\
\forall v_0 \forall v_1 \forall v_2 ((P(v_0, v_1) \land P(v_1, v_2)) \rightarrow P(v_0, v_2))
\]

These sentences are just the symbolizations of “for any \(x \), \(Rxx \)” (\(R \) is reflexive) and “whenever \(Rxy \) and \(Ryz \) then also \(Rxz \)” (\(R \) is transitive). We see that a structure \(M \) is a model of these two sentences \(\Gamma \) iff \(R \) (i.e., \(P^M \)), is a preorder on \(A \) (i.e., \(|M| \)). In other words, the models of \(\Gamma \) are exactly the preorders. Any property of all preorders that can be expressed in the first-order language with just \(P \) as predicate symbol (like reflexivity and transitivity above), is entailed by the two sentences in \(\Gamma \) and vice versa. So anything we can prove about models of \(\Gamma \) we have proved about all preorders.

For any particular theory and class of models (such as \(\Gamma \) and all preorders), there will be interesting questions about what can be expressed in the corresponding first-order language, and what cannot be expressed. There are some properties of structures that are interesting for all languages and classes of models, namely those concerning the size of the domain. One can always express, for instance, that the domain contains exactly \(n \) elements, for any \(n \in \mathbb{Z}^+ \). One can also express, using a set of infinitely many sentences, that the domain is infinite. But one cannot express that the domain is finite, or that the domain
is non-enumerable. These results about the limitations of first-order languages are consequences of the compactness and Löwenheim-Skolem theorems.

int.9 Soundness and Completeness

We’ll also introduce derivation systems for first-order logic. There are many derivation systems that logicians have developed, but they all define the same derivability relation between sentences. We say that Γ derives φ, $\Gamma \vdash \varphi$, if there is a derivation of a certain precisely defined sort. Derivations are always finite arrangements of symbols—perhaps a list of sentences, or some more complicated structure. The purpose of derivation systems is to provide a tool to determine if a sentence is entailed by some set Γ. In order to serve that purpose, it must be true that $\Gamma \models \varphi$ if, and only if, $\Gamma \vdash \varphi$.

If $\Gamma \vdash \varphi$ but not $\Gamma \models \varphi$, our derivation system would be too strong, prove too much. The property that if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$ is called soundness, and it is a minimal requirement on any good derivation system. On the other hand, if $\Gamma \models \varphi$ but not $\Gamma \vdash \varphi$, then our derivation system is too weak, it doesn’t prove enough. The property that if $\Gamma \models \varphi$ then $\Gamma \vdash \varphi$ is called completeness. Soundness is usually relatively easy to prove (by induction on the structure of derivations, which are inductively defined). Completeness is harder to prove.

Soundness and completeness have a number of important consequences. If a set of sentences Γ derives a contradiction (such as $\varphi \land \neg \varphi$) it is called inconsistent. Inconsistent Γ’s cannot have any models, they are unsatisfiable. From completeness the converse follows: any Γ that is not inconsistent—or, as we will say, consistent—has a model. In fact, this is equivalent to completeness, and is the form of completeness we will actually prove. It is a deep and perhaps surprising result: just because you cannot prove $\varphi \land \neg \varphi$ from Γ guarantees that there is a structure that is as Γ describes it. So completeness gives an answer to the question: which sets of sentences have models? Answer: all and only consistent sets do.

The soundness and completeness theorems have two important consequences: the compactness and the Löwenheim-Skolem theorem. These are important results in the theory of models, and can be used to establish many interesting results. We’ve already mentioned two: first-order logic cannot express that the domain of a structure is finite or that it is non-enumerable.

Historically, all of this—how to define syntax and semantics of first-order logic, how to define good derivation systems, how to prove that they are sound and complete, getting clear about what can and cannot be expressed in first-order languages—tak[e] a long time to figure out and get right. We now know how to do it, but going through all the details can still be confusing and tedious. But it’s also important, because the methods developed here for the formal language of first-order logic are applied all over the place in logic, computer science, and linguistics. So working through the details pays off in the long
run.

Photo Credits
Bibliography