int.1 Formulas

Here is the approach we will use to rigorously specify sentences of first-order logic and to deal with the issues arising from the use of variables. We first define a different set of expressions: formulas. Once we’ve done that, we can consider the role variables play in them—and on the basis of some other ideas, namely those of “free” and “bound” variables, we can define what a sentence is (namely, a formula without free variables). We do this not just because it makes the definition of “sentence” more manageable, but also because it will be crucial to the way we define the semantic notion of satisfaction.

Let’s define “formula” for a simple first-order language, one containing only a single predicate symbol P and a single constant symbol a, and only the logical symbols \neg, \land, and \exists. Our full definitions will be much more general: we’ll allow infinitely many predicate symbols and constant symbols. In fact, we will also consider function symbols which can be combined with constant symbols and variables to form “terms.” For now, a and the variables will be our only terms. We do need infinitely many variables. We’ll officially use the symbols v_0, v_1, …, as variables.

Definition int.1. The set of formulas Frm is defined as follows:

1. $P(a)$ and $P(v_i)$ are formulas ($i \in \mathbb{N}$).
2. If φ is a formula, then $\neg \varphi$ is formula.
3. If φ and ψ are formulas, then $(\varphi \land \psi)$ is a formula.
4. If φ is a formula and x is a variable, then $\exists x \varphi$ is a formula.
5. Nothing else is a formula.

(1) tells us that $P(a)$ and $P(v_i)$ are formulas, for any $i \in \mathbb{N}$. These are the so-called atomic formulas. They give us something to start from. The other clauses give us ways of forming new formulas from ones we have already formed. So for instance, by (2), we get that $\neg P(v_2)$ is a formula, since $P(v_2)$ is already a formula by (1). Then, by (4), we get that $\exists v_2 \neg P(v_2)$ is another formula, and so on. (5) tells us that only strings we can form in this way count as formulas. In particular, $\exists v_0 P(a)$ and $\exists v_0 \exists v_0 P(a)$ do not count as formulas, and $(\neg P(a))$ does not, because of the extraneous outer parentheses.

This way of defining formulas is called an inductive definition, and it allows us to prove things about formulas using a version of proof by induction called structural induction. These are discussed in a general way in ?? and ??, which you should review before delving into the proofs later on. Basically, the idea is that if you want to give a proof that something is true for all formulas, you show first that it is true for the atomic formulas, and then that if it’s true for any formula φ (and ψ), it’s also true for $\neg \varphi$, $(\varphi \land \psi)$, and $\exists x \varphi$. For instance, this proves that it’s true for $\exists v_2 \neg P(v_2)$: from the first part you know that it’s true for the atomic formula $P(v_2)$. Then you get that it’s true for $\neg P(v_2)$ by
the second part, and then again that it’s true for $\exists v_2 \neg \neg \approx P(v_2)$ itself. Since all formulas are inductively generated from atomic formulas, this works for any of them.

Photo Credits

Bibliography