int.1 First-Order Logic

You are probably familiar with first-order logic from your first introduction to formal logic. You may know it as “quantificational logic” or “predicate logic.” First-order logic, first of all, is a formal language. That means, it has a certain vocabulary, and its expressions are strings from this vocabulary. But not every string is permitted. There are different kinds of permitted expressions: terms, formulas, and sentences. We are mainly interested in sentences of first-order logic: they provide us with a formal analogue of sentences of English, and about them we can ask the questions a logician typically is interested in. For instance:

- Does \(\psi \) follow from \(\varphi \) logically?
- Is \(\varphi \) logically true, logically false, or contingent?
- Are \(\varphi \) and \(\psi \) equivalent?

These questions are primarily questions about the “meaning” of sentences of first-order logic. For instance, a philosopher would analyze the question of whether \(\psi \) follows logically from \(\varphi \) as asking: is there a case where \(\varphi \) is true but \(\psi \) is false (\(\psi \) doesn’t follow from \(\varphi \)), or does every case that makes \(\varphi \) true also make \(\psi \) true (\(\psi \) does follow from \(\varphi \))? But we haven’t been told yet what a “case” is—that is the job of semantics. The semantics of first-order logic provides a mathematically precise model of the philosopher’s intuitive idea of “case,” and also—and this is important—of what it is for a sentence \(\varphi \) to be true in a case. We call the mathematically precise model that we will develop a structure. The relation which makes “true in” precise, is called the relation of satisfaction. So what we will define is “\(\varphi \) is satisfied in \(M \)” (in symbols: \(M \models \varphi \)) for sentences \(\varphi \) and structures \(M \). Once this is done, we can also give precise definitions of the other semantical terms such as “follows from” or “is logically true.” These definitions will make it possible to settle, again with mathematical precision, whether, e.g., \(\forall x (\varphi(x) \rightarrow \psi(x)) \), \(\exists x \varphi(x) \models \exists x \psi(x) \). The answer will, of course, be “yes.” If you’ve already been trained to symbolize sentences of English in first-order logic, you will recognize this as, e.g., the symbolizations of, say, “All ants are insects, there are ants, therefore there are insects.” That is obviously a valid argument, and so our mathematical model of “follows from” for our formal language should give the same answer.

Another topic you probably remember from your first introduction to formal logic is that there are derivations. If you have taken a first formal logic course, your instructor will have made you practice finding such derivations, perhaps even a derivation that shows that the above entailment holds. There are many different ways to give derivations: you may have done something called “natural deduction” or “truth trees,” but there are many others. The purpose of derivation systems is to provide tools using which the logicians'
questions above can be answered: e.g., a natural deduction derivation in which
∀x(ϕ(x) → ψ(x)) and ∃xϕ(x) are premises and ∃xψ(x) is the conclusion (last
line) verifies that ∃xψ(x) logically follows from ∀x(ϕ(x) → ψ(x)) and ∃xϕ(x).

But why is that? On the face of it, derivation systems have nothing to do
with semantics: giving a formal derivation merely involves arranging symbols in
certain rule-governed ways; they don’t mention “cases” or “true in” at all. The
connection between derivation systems and semantics has to be established by
a meta-logical investigation. What’s needed is a mathematical proof, e.g., that
a formal derivation of ∃xψ(x) from premises ∀x(ϕ(x) → ψ(x)) and ∃xϕ(x) is
possible, if, and only if, ∀x(ϕ(x) → ψ(x)) and ∃xϕ(x) together entail ∃xψ(x).
Before this can be done, however, a lot of painstaking work has to be carried
out to get the definitions of syntax and semantics correct.

Photo Credits

Bibliography

Magnus, P. D., Tim Button, J. Robert Loftis, Aaron Thomas-Bolduc, Robert
openlogicproject.org/.