
Part I

First-order Logic

1

This part covers the metatheory of first-order logic through complete-
ness. Currently it does not rely on a separate treatment of propositional
logic; everything is proved. The source files will exclude the material on
quantifiers (and replace “structure” with “valuation”, M with v, etc.) if
the “FOL” tag is false. In fact, most of the material in the part on propo-
sitional logic is simply the first-order material with the “FOL” tag turned
off.

If the part on propositional logic is included, this results in a lot of
repetition. It is planned, however, to make it possible to let this part take
into account the material on propositional logic (and exclude the material
already covered, as well as shorten proofs with references to the respective
places in the propositional part).

2 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 1

Introduction to First-Order Logic

1.1 First-Order Logic

fol:int:fol:
sec

You are probably familiar with first-order logic from your first introduction to
formal logic.1 You may know it as “quantificational logic” or “predicate logic.”
First-order logic, first of all, is a formal language. That means, it has a certain
vocabulary, and its expressions are strings from this vocabulary. But not every
string is permitted. There are different kinds of permitted expressions: terms,
formulas, and sentences. We are mainly interested in sentences of first-order
logic: they provide us with a formal analogue of sentences of English, and
about them we can ask the questions a logician typically is interested in. For
instance:

• Does ψ follow from φ logically?

• Is φ logically true, logically false, or contingent?

• Are φ and ψ equivalent?

These questions are primarily questions about the “meaning” of sentences
of first-order logic. For instance, a philosopher would analyze the question of
whether ψ follows logically from φ as asking: is there a case where φ is true
but ψ is false (ψ doesn’t follow from φ), or does every case that makes φ true
also make ψ true (ψ does follow from φ)? But we haven’t been told yet what
a “case” is—that is the job of semantics. The semantics of first-order logic
provides a mathematically precise model of the philosopher’s intuitive idea of
“case,” and also—and this is important—of what it is for a sentence φ to be
true in a case. We call the mathematically precise model that we will develop
a structure. The relation which makes “true in” precise, is called the relation of
satisfaction. So what we will define is “φ is satisfied in M” (in symbols: M ⊨ φ)
for sentences φ and structures M. Once this is done, we can also give precise

1In fact, we more or less assume you are! If you’re not, you could review a more elemen-
tary textbook, such as forall x (Magnus et al., 2021).

3

definitions of the other semantical terms such as “follows from” or “is logically
true.” These definitions will make it possible to settle, again with mathematical
precision, whether, e.g., ∀x (φ(x)→ψ(x)),∃xφ(x) ⊨ ∃xψ(x). The answer will,
of course, be “yes.” If you’ve already been trained to symbolize sentences of
English in first-order logic, you will recognize this as, e.g., the symbolizations
of, say, “All ants are insects, there are ants, therefore there are insects.” That
is obviously a valid argument, and so our mathematical model of “follows from”
for our formal language should give the same answer.

Another topic you probably remember from your first introduction to for-
mal logic is that there are derivations. If you have taken a first formal logic
course, your instructor will have made you practice finding such derivations,
perhaps even a derivation that shows that the above entailment holds. There
are many different ways to give derivations: you may have done something
called “natural deduction” or “truth trees,” but there are many others. The
purpose of derivation systems is to provide tools using which the logicians’
questions above can be answered: e.g., a natural deduction derivation in which
∀x (φ(x)→ψ(x)) and ∃xφ(x) are premises and ∃xψ(x) is the conclusion (last
line) verifies that ∃xψ(x) logically follows from ∀x (φ(x)→ψ(x)) and ∃xφ(x).

But why is that? On the face of it, derivation systems have nothing to do
with semantics: giving a formal derivation merely involves arranging symbols in
certain rule-governed ways; they don’t mention “cases” or “true in” at all. The
connection between derivation systems and semantics has to be established by
a meta-logical investigation. What’s needed is a mathematical proof, e.g., that
a formal derivation of ∃xψ(x) from premises ∀x (φ(x) → ψ(x)) and ∃xφ(x) is
possible, if, and only if, ∀x (φ(x)→ψ(x)) and ∃xφ(x) together entail ∃xψ(x).
Before this can be done, however, a lot of painstaking work has to be carried
out to get the definitions of syntax and semantics correct.

1.2 Syntax

fol:int:syn:
sec

We first must make precise what strings of symbols count as sentences of first-
order logic. We’ll do this later; for now we’ll just proceed by example. The basic
building blocks—the vocabulary—of first-order logic divides into two parts.
The first part is the symbols we use to say specific things or to pick out specific
things. We pick out things using constant symbols, and we say stuff about the
things we pick out using predicate symbols. E.g, we might use a as a constant
symbol to pick out a single thing, and then say something about it using the
sentence P (a). If you have meanings for “a” and “P” in mind, you can read
P (a) as a sentence of English (and you probably have done so when you first
learned formal logic). Once you have such simple sentences of first-order logic,
you can build more complex ones using the second part of the vocabulary: the
logical symbols (connectives and quantifiers). So, for instance, we can form
expressions like (P (a) ∧Q(b)) or ∃x P (x).

In order to provide the precise definitions of semantics and the rules of
our derivation systems required for rigorous meta-logical study, we first of all

4 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

have to give a precise definition of what counts as a sentence of first-order
logic. The basic idea is easy enough to understand: there are some simple
sentences we can form from just predicate symbols and constant symbols, such
as P (a). And then from these we form more complex ones using the connectives
and quantifiers. But what exactly are the rules by which we are allowed to
form more complex sentences? These must be specified, otherwise we have
not defined “sentence of first-order logic” precisely enough. There are a few
issues. The first one is to get the right strings to count as sentences. The
second one is to do this in such a way that we can give mathematical proofs
about all sentences. Finally, we’ll have to also give precise definitions of some
rudimentary operations with sentences, such as “replace every x in φ by b.”
The trouble is that the quantifiers and variables we have in first-order logic
make it not entirely obvious how this should be done. E.g., should ∃x P (a)
count as a sentence? What about ∃x ∃x P (x)? What should the result of
“replace x by b in (P (x) ∧ ∃x P (x))” be?

1.3 Formulas

Here is the approach we will use to rigorously specify sentences of first-order
logic and to deal with the issues arising from the use of variables. We first
define a different set of expressions: formulas. Once we’ve done that, we can
consider the role variables play in them—and on the basis of some other ideas,
namely those of “free” and “bound” variables, we can define what a sentence
is (namely, a formula without free variables). We do this not just because it
makes the definition of “sentence” more manageable, but also because it will
be crucial to the way we define the semantic notion of satisfaction.

Let’s define “formula” for a simple first-order language, one containing only
a single predicate symbol P and a single constant symbol a, and only the logical
symbols ¬, ∧, and ∃. Our full definitions will be much more general: we’ll allow
infinitely many predicate symbols and constant symbols. In fact, we will also
consider function symbols which can be combined with constant symbols and
variables to form “terms.” For now, a and the variables will be our only terms.
We do need infinitely many variables. We’ll officially use the symbols v0, v1,
. . . , as variables.

Definition 1.1. The set of formulas Frm is defined as follows:

1.fol:int:fml:

fmls-atom

P (a) and P (vi) are formulas (i ∈ N).

2.fol:int:fml:

fmls-not

If φ is a formula, then ¬φ is formula.

3. If φ and ψ are formulas, then (φ ∧ ψ) is a formula.

4.fol:int:fml:

fmls-ex

If φ is a formula and x is a variable, then ∃xφ is a formula.

5.fol:int:fml:

fmls-limit

Nothing else is a formula.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

(1) tells us that P (a) and P (vi) are formulas, for any i ∈ N. These are
the so-called atomic formulas. They give us something to start from. The
other clauses give us ways of forming new formulas from ones we have already
formed. So for instance, by (2), we get that ¬P (v2) is a formula, since P (v2)
is already a formula by (1). Then, by (4), we get that ∃v2 ¬P (v2) is another
formula, and so on. (5) tells us that only strings we can form in this way count
as formulas. In particular, ∃v0 P (a) and ∃v0 ∃v0 P (a) do count as formulas, and
(¬P (a)) does not, because of the extraneous outer parentheses.

This way of defining formulas is called an inductive definition, and it allows
us to prove things about formulas using a version of proof by induction called
structural induction. These are discussed in a general way in ?? and ??, which
you should review before delving into the proofs later on. Basically, the idea
is that if you want to give a proof that something is true for all formulas, you
show first that it is true for the atomic formulas, and then that if it’s true for
any formula φ (and ψ), it’s also true for ¬φ, (φ ∧ ψ), and ∃xφ. For instance,
this proves that it’s true for ∃v2 ¬P (v2): from the first part you know that it’s
true for the atomic formula P (v2). Then you get that it’s true for ¬P (v2) by
the second part, and then again that it’s true for ∃v2 ¬P (v2) itself. Since all
formulas are inductively generated from atomic formulas, this works for any of
them.

1.4 Satisfaction

fol:int:sat:
sec

We can already skip ahead to the semantics of first-order logic once we know
what formulas are: here, the basic definition is that of a structure. For our
simple language, a structure M has just three components: a non-empty set
|M| called the domain, what a picks out in M, and what P is true of in M.
The object picked out by a is denoted aM and the set of things P is true of
by PM. A structure M consists of just these three things: |M|, aM ∈ |M| and
PM ⊆ |M|. The general case will be more complicated, since there will be
many predicate symbols and constant symbols, the constant symbols can have
more than one place, and there will also be function symbols.

This is enough to give a definition of satisfaction for formulas that don’t
contain variables. The idea is to give an inductive definition that mirrors the
way we have defined formulas. We specify when an atomic formula is satisfied
in M, and then when, e.g., ¬φ is satisfied in M on the basis of whether or not
φ is satisfied in M. E.g., we could define:

1. P (a) is satisfied in M iff aM ∈ PM.

2. ¬φ is satisfied in M iff φ is not satisfied in M.

3. (φ∧ψ) is satisfied in M iff φ is satisfied in M, and ψ is satisfied in M as
well.

Let’s say that |M| = {0, 1, 2}, aM = 1, and PM = {1, 2}. This definition would
tell us that P (a) is satisfied in M (since aM = 1 ∈ {1, 2} = PM). It tells

6 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

us further that ¬P (a) is not satisfied in M, and that in turn ¬¬P (a) is and
(¬P (a) ∧ P (a)) is not satisfied, and so on.

The trouble comes when we want to give a definition for the quantifiers:
we’d like to say something like, “∃v0 P (v0) is satisfied iff P (v0) is satisfied.”
But the structure M doesn’t tell us what to do about variables. What we
actually want to say is that P (v0) is satisfied for some value of v0. To make
this precise we need a way to assign elements of |M| not just to a but also
to v0. To this end, we introduce variable assignments. A variable assignment
is simply a function s that maps variables to elements of |M| (in our example,
to one of 1, 2, or 3). Since we don’t know beforehand which variables might
appear in a formula we can’t limit which variables s assigns values to. The
simple solution is to require that s assigns values to all variables v0, v1, . . .
We’ll just use only the ones we need.

Instead of defining satisfaction of formulas just relative to a structure, we’ll
define it relative to a structure M and a variable assignment s, and write
M, s ⊨ φ for short. Our definition will now include an additional clause to deal
with atomic formulas containing variables:

1. M, s ⊨ P (a) iff aM ∈ PM.

2. M, s ⊨ P (vi) iff s(vi) ∈ PM.

3. M, s ⊨ ¬φ iff not M, s ⊨ φ.

4. M, s ⊨ (φ ∧ ψ) iff M, s ⊨ φ and M, s ⊨ ψ.

Ok, this solves one problem: we can now say when M satisfies P (v0) for the
value s(v0). To get the definition right for ∃v0 P (v0) we have to do one more
thing: We want to have that M, s ⊨ ∃v0 P (v0) iff M, s′ ⊨ P (v0) for some way
s′ of assigning a value to v0. But the value assigned to v0 does not necessarily
have to be the value that s(v0) picks out. We’ll introduce a notation for that:
if m ∈ |M|, then we let s[m/v0] be the assignment that is just like s (for all
variables other than v0), except to v0 it assigns m. Now our definition can be:

5. M, s ⊨ ∃vi φ iff M, s[m/vi] ⊨ φ for some m ∈ |M|.

Does it work out? Let’s say we let s(vi) = 0 for all i ∈ N. M, s ⊨ ∃v0 P (v0) iff
there is an m ∈ |M| so that M, s[m/v0] ⊨ P (v0). And there is: we can choose
m = 1 or m = 2. Note that this is true even if the value s(v0) assigned to v0
by s itself—in this case, 0—doesn’t do the job. We have M, s[1/v0] ⊨ P (v0)
but not M, s ⊨ P (v0).

If this looks confusing and cumbersome: it is. But the added complexity is
required to give a precise, inductive definition of satisfaction for all formulas,
and we need something like it to precisely define the semantic notions. There
are other ways of doing it, but they are all equally (in)elegant.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.5 Sentences

fol:int:snt:
sec

Ok, now we have a (sketch of a) definition of satisfaction (“true in”) for struc-
tures and formulas. But it needs this additional bit—a variable assignment—
and what we wanted is a definition of sentences. How do we get rid of assign-
ments, and what are sentences?

You probably remember a discussion in your first introduction to formal
logic about the relation between variables and quantifiers. A quantifier is al-
ways followed by a variable, and then in the part of the sentence to which that
quantifier applies (its “scope”), we understand that the variable is “bound”
by that quantifier. In formulas it was not required that every variable has a
matching quantifier, and variables without matching quantifiers are “free” or
“unbound.” We will take sentences to be all those formulas that have no free
variables.

Again, the intuitive idea of when an occurrence of a variable in a formula φ
is bound, which quantifier binds it, and when it is free, is not difficult to get.
You may have learned a method for testing this, perhaps involving counting
parentheses. We have to insist on a precise definition—and because we have
defined formulas by induction, we can give a definition of the free and bound
occurrences of a variable x in a formula φ also by induction. E.g., it might
look like this for our simplified language:

1. If φ is atomic, all occurrences of x in it are free (that is, the occurrence
of x in P (x) is free).

2. If φ is of the form ¬ψ, then an occurrence of x in ¬ψ is free iff the
corresponding occurrence of x is free in ψ (that is, the free occurrences
of variables in ψ are exactly the corresponding occurrences in ¬ψ).

3. If φ is of the form (ψ ∧ χ), then an occurrence of x in (ψ ∧ χ) is free iff
the corresponding occurrence of x is free in ψ or in χ.

4. If φ is of the form ∃xψ, then no occurrence of x in φ is free; if it is of the
form ∃y ψ where y is a different variable than x, then an occurrence of x
in ∃y ψ is free iff the corresponding occurrence of x is free in ψ.

Once we have a precise definition of free and bound occurrences of vari-
ables, we can simply say: a sentence is any formula without free occurrences
of variables.

1.6 Semantic Notions

fol:int:sem:
sec

We mentioned above that when we consider whether M, s ⊨ φ holds, we (for
convenience) let s assign values to all variables, but only the values it assigns
to variables in φ are used. In fact, it’s only the values of free variables in φ
that matter. Of course, because we’re careful, we are going to prove this fact.
Since sentences have no free variables, s doesn’t matter at all when it comes to

8 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

whether or not they are satisfied in a structure. So, when φ is a sentence we
can define M ⊨ φ to mean “M, s ⊨ φ for all s,” which as it happens is true iff
M, s ⊨ φ for at least one s. We need to introduce variable assignments to get
a working definition of satisfaction for formulas, but for sentences, satisfaction
is independent of the variable assignments.

Once we have a definition of “M ⊨ φ,” we know what “case” and “true
in” mean as far as sentences of first-order logic are concerned. On the basis
of the definition of M ⊨ φ for sentences we can then define the basic semantic
notions of validity, entailment, and satisfiability. A sentence is valid, ⊨ φ, if
every structure satisfies it. It is entailed by a set of sentences, Γ ⊨ φ, if every
structure that satisfies all the sentences in Γ also satisfies φ. And a set of
sentences is satisfiable if some structure satisfies all sentences in it at the same
time.

Because formulas are inductively defined, and satisfaction is in turn defined
by induction on the structure of formulas, we can use induction to prove prop-
erties of our semantics and to relate the semantic notions defined. We’ll collect
and prove some of these properties, partly because they are individually inter-
esting, but mainly because many of them will come in handy when we go on
to investigate the relation between semantics and derivation systems. In order
to do so, we’ll also have to define (precisely, i.e., by induction) some syntactic
notions and operations we haven’t mentioned yet.

1.7 Substitution

fol:int:sub:
sec

We’ll discuss an example to illustrate how things hang together, and how the
development of syntax and semantics lays the foundation for our more advanced
investigations later. Our derivation systems should let us derive P (a) from
∀v0 P (v0). Maybe we even want to state this as a rule of inference. However,
to do so, we must be able to state it in the most general terms: not just for
P , a, and v0, but for any formula φ, and term t, and variable x. (Recall that
constant symbols are terms, but we’ll consider also more complicated terms
built from constant symbols and function symbols.) So we want to be able
to say something like, “whenever you have derived ∀xφ(x) you are justified
in inferring φ(t)—the result of removing ∀x and replacing x by t.” But what
exactly does “replacing x by t” mean? What is the relation between φ(x)
and φ(t)? Does this always work?

To make this precise, we define the operation of substitution. Substitution is
actually tricky, because we can’t just replace all x’s in φ by t, and not every t
can be substituted for any x. We’ll deal with this, again, using inductive
definitions. But once this is done, specifying an inference rule as “infer φ(t)
from ∀xφ(x)” becomes a precise definition. Moreover, we’ll be able to show
that this is a good inference rule in the sense that ∀xφ(x) entails φ(t). But to
prove this, we have to again prove something that may at first glance prompt
you to ask “why are we doing this?” That ∀xφ(x) entails φ(t) relies on the fact
that whether or not M ⊨ φ(t) holds depends only on the value of the term t,

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 9

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

i.e., if we let m be whatever element of |M| is picked out by t, then M, s ⊨ φ(t)
iff M, s[m/x] ⊨ φ(x). This holds even when t contains variables, but we’ll have
to be careful with how exactly we state the result.

1.8 Models and Theories

fol:int:mod:
sec

Once we’ve defined the syntax and semantics of first-order logic, we can get to
work investigating the properties of structures and the semantic notions. We
can also define derivation systems, and investigate those. For a set of sentences,
we can ask: what structures make all the sentences in that set true? Given a
set of sentences Γ , a structure M that satisfies them is called a model of Γ .
We might start from Γ and try to find its models—what do they look like?
How big or small do they have to be? But we might also start with a single
structure or collection of structures and ask: what sentences are true in them?
Are there sentences that characterize these structures in the sense that they,
and only they, are true in them? These kinds of questions are the domain of
model theory. They also underlie the axiomatic method : describing a collection
of structures by a set of sentences, the axioms of a theory. This is made possible
by the observation that exactly those sentences entailed in first-order logic by
the axioms are true in all models of the axioms.

As a very simple example, consider preorders. A preorder is a relation R
on some set A which is both reflexive and transitive. A set A with a two-place
relation R ⊆ A×A on it is exactly what we would need to give a structure for
a first-order language with a single two-place relation symbol P : we would set
|M| = A and PM = R. Since R is a preorder, it is reflexive and transitive, and
we can find a set Γ of sentences of first-order logic that say this:

∀v0 P (v0, v0)

∀v0 ∀v1 ∀v2 ((P (v0, v1) ∧ P (v1, v2)) → P (v0, v2))

These sentences are just the symbolizations of “for any x, Rxx” (R is reflexive)
and “whenever Rxy and Ryz then also Rxz” (R is transitive). We see that
a structure M is a model of these two sentences Γ iff R (i.e., PM), is a preorder
on A (i.e., |M|). In other words, the models of Γ are exactly the preorders. Any
property of all preorders that can be expressed in the first-order language with
just P as predicate symbol (like reflexivity and transitivity above), is entailed
by the two sentences in Γ and vice versa. So anything we can prove about
models of Γ we have proved about all preorders.

For any particular theory and class of models (such as Γ and all preorders),
there will be interesting questions about what can be expressed in the corre-
sponding first-order language, and what cannot be expressed. There are some
properties of structures that are interesting for all languages and classes of mod-
els, namely those concerning the size of the domain. One can always express,
for instance, that the domain contains exactly n elements, for any n ∈ Z+. One
can also express, using a set of infinitely many sentences, that the domain is
infinite. But one cannot express that the domain is finite, or that the domain

10 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

is non-enumerable. These results about the limitations of first-order languages
are consequences of the compactness and Löwenheim-Skolem theorems.

1.9 Soundness and Completeness

fol:int:scp:
sec

We’ll also introduce derivation systems for first-order logic. There are many
derivation systems that logicians have developed, but they all define the same
derivability relation between sentences. We say that Γ derives φ, Γ ⊢ φ,
if there is a derivation of a certain precisely defined sort. Derivations are
always finite arrangements of symbols—perhaps a list of sentences, or some
more complicated structure. The purpose of derivation systems is to provide
a tool to determine if a sentence is entailed by some set Γ . In order to serve
that purpose, it must be true that Γ ⊨ φ if, and only if, Γ ⊢ φ.

If Γ ⊢ φ but not Γ ⊨ φ, our derivation system would be too strong, prove
too much. The property that if Γ ⊢ φ then Γ ⊨ φ is called soundness, and it
is a minimal requirement on any good derivation system. On the other hand,
if Γ ⊨ φ but not Γ ⊢ φ, then our derivation system is too weak, it doesn’t
prove enough. The property that if Γ ⊨ φ then Γ ⊢ φ is called completeness.
Soundness is usually relatively easy to prove (by induction on the structure of
derivations, which are inductively defined). Completeness is harder to prove.

Soundness and completeness have a number of important consequences.
If a set of sentences Γ derives a contradiction (such as φ ∧ ¬φ) it is called
inconsistent. Inconsistent Γ s cannot have any models, they are unsatisfiable.
From completeness the converse follows: any Γ that is not inconsistent—or, as
we will say, consistent—has a model. In fact, this is equivalent to completeness,
and is the form of completeness we will actually prove. It is a deep and perhaps
surprising result: just because you cannot prove φ∧¬φ from Γ guarantees that
there is a structure that is as Γ describes it. So completeness gives an answer
to the question: which sets of sentences have models? Answer: all and only
consistent sets do.

The soundness and completeness theorems have two important consequences:
the compactness and the Löwenheim-Skolem theorem. These are important re-
sults in the theory of models, and can be used to establish many interesting
results. We’ve already mentioned two: first-order logic cannot express that the
domain of a structure is finite or that it is non-enumerable.

Historically, all of this—how to define syntax and semantics of first-order
logic, how to define good derivation systems, how to prove that they are sound
and complete, getting clear about what can and cannot be expressed in first-
order languages—took a long time to figure out and get right. We now know
how to do it, but going through all the details can still be confusing and tedious.
But it’s also important, because the methods developed here for the formal
language of first-order logic are applied all over the place in logic, computer
science, and linguistics. So working through the details pays off in the long
run.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 2

Syntax of First-Order Logic

2.1 Introduction

fol:syn:itx:
sec

In order to develop the theory and metatheory of first-order logic, we must
first define the syntax and semantics of its expressions. The expressions of
first-order logic are terms and formulas. Terms are formed from variables,
constant symbols, and function symbols. Formulas, in turn, are formed from
predicate symbols together with terms (these form the smallest, “atomic” for-
mulas), and then from atomic formulas we can form more complex ones using
logical connectives and quantifiers. There are many different ways to set down
the formation rules; we give just one possible one. Other systems will chose
different symbols, will select different sets of connectives as primitive, will use
parentheses differently (or even not at all, as in the case of so-called Polish nota-
tion). What all approaches have in common, though, is that the formation rules
define the set of terms and formulas inductively. If done properly, every expres-
sion can result essentially in only one way according to the formation rules. The
inductive definition resulting in expressions that are uniquely readable means
we can give meanings to these expressions using the same method—inductive
definition.

2.2 First-Order Languages

fol:syn:fol:
sec

Expressions of first-order logic are built up from a basic vocabulary containing
variables, constant symbols, predicate symbols and sometimes function symbols.
From them, together with logical connectives, quantifiers, and punctuation
symbols such as parentheses and commas, terms and formulas are formed.

explanation Informally, predicate symbols are names for properties and relations, con-
stant symbols are names for individual objects, and function symbols are names
for mappings. These, except for the identity predicate =, are the non-logical
symbols and together make up a language. Any first-order language L is deter-
mined by its non-logical symbols. In the most general case, L contains infinitely
many symbols of each kind.

12

In the general case, we make use of the following symbols in first-order logic:

1. Logical symbols

a) Logical connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction),
→ (conditional), ↔ (biconditional), ∀ (universal quantifier), ∃ (ex-
istential quantifier).

b) The propositional constant for falsity ⊥.

c) The propositional constant for truth ⊤.

d) The two-place identity predicate =.

e) A denumerable set of variables: v0, v1, v2, . . .

2. Non-logical symbols, making up the standard language of first-order logic

a) A denumerable set of n-place predicate symbols for each n > 0: An0 ,
An1 , An2 , . . .

b) A denumerable set of constant symbols: c0, c1, c2,

c) A denumerable set of n-place function symbols for each n > 0: f n0 ,
f n1 , f n2 , . . .

3. Punctuation marks: (,), and the comma.

Most of our definitions and results will be formulated for the full standard
language of first-order logic. However, depending on the application, we may
also restrict the language to only a few predicate symbols, constant symbols,
and function symbols.

Example 2.1. The language LA of arithmetic contains a single two-place
predicate symbol <, a single constant symbol 0, one one-place function sym-
bol ′, and two two-place function symbols + and ×.

Example 2.2. The language of set theory LZ contains only the single two-
place predicate symbol ∈.

Example 2.3. The language of orders L≤ contains only the two-place predi-
cate symbol ≤.

Again, these are conventions: officially, these are just aliases, e.g., <, ∈,
and ≤ are aliases for A20, 0 for c0, ′ for f 10 , + for f 20 , × for f 21 .

.
introYou may be familiar with different terminology and symbols than the ones

we use above. Logic texts (and teachers) commonly use ∼, ¬, or ! for “nega-
tion”, ∧, ·, or & for “conjunction”. Commonly used symbols for the “con-
ditional” or “implication” are →, ⇒, and ⊃. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are ↔, ⇔, and ≡. The ⊥ sym-
bol is variously called “falsity,” “falsum,”, “absurdity,” or “bottom.” The ⊤
symbol is variously called “truth,” “verum,” or “top.”

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It is conventional to use lower case letters (e.g., a, b, c) from the beginning
of the Latin alphabet for constant symbols (sometimes called names), and lower
case letters from the end (e.g., x, y, z) for variables. Quantifiers combine with
variables, e.g., x; notational variations include ∀x, (∀x), (x), Πx,

∧
x for the

universal quantifier and ∃x, (∃x), (Ex), Σx,
∨
x for the existential quantifier.

explanation We might treat all the propositional operators and both quantifiers as prim-
itive symbols of the language. We might instead choose a smaller stock of
primitive symbols and treat the other logical operators as defined. “Truth
functionally complete” sets of Boolean operators include {¬,∨}, {¬,∧}, and
{¬,→}—these can be combined with either quantifier for an expressively com-
plete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke |
(named after Henry Sheffer), and Peirce’s arrow ↓, also known as Quine’s dag-
ger. When given their usual readings of “nand” and “nor” (respectively), these
operators are truth functionally complete by themselves.

2.3 Terms and Formulas

fol:syn:frm:
sec

Once a first-order language L is given, we can define expressions built up from
the basic vocabulary of L. These include in particular terms and formulas.

Definition 2.4 (Terms). fol:syn:frm:

defn:terms

The set of terms Trm(L) of L is defined inductively
by:

1. Every variable is a term.

2. Every constant symbol of L is a term.

3. If f is an n-place function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn)
is a term.

4. Nothing else is a term.

A term containing no variables is a closed term.

explanation The constant symbols appear in our specification of the language and the
terms as a separate category of symbols, but they could instead have been
included as zero-place function symbols. We could then do without the second
clause in the definition of terms. We just have to understand f(t1, . . . , tn) as
just f by itself if n = 0.

Definition 2.5 (Formulas). fol:syn:frm:

defn:formulas

The set of formulas Frm(L) of the language L
is defined inductively as follows:

1. ⊥ is an atomic formula.

2. ⊤ is an atomic formula.

3. If R is an n-place predicate symbol of L and t1, . . . , tn are terms of L,
then R(t1, . . . , tn) is an atomic formula.

14 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

4. If t1 and t2 are terms of L, then =(t1, t2) is an atomic formula.

5. If φ is a formula, then ¬φ is formula.

6. If φ and ψ are formulas, then (φ ∧ ψ) is a formula.

7. If φ and ψ are formulas, then (φ ∨ ψ) is a formula.

8. If φ and ψ are formulas, then (φ→ ψ) is a formula.

9. If φ and ψ are formulas, then (φ↔ ψ) is a formula.

10. If φ is a formula and x is a variable, then ∀xφ is a formula.

11. If φ is a formula and x is a variable, then ∃xφ is a formula.

12. Nothing else is a formula.

explanationThe definitions of the set of terms and that of formulas are inductive defi-
nitions. Essentially, we construct the set of formulas in infinitely many stages.
In the initial stage, we pronounce all atomic formulas to be formulas; this
corresponds to the first few cases of the definition, i.e., the cases for ⊤, ⊥,
R(t1, . . . , tn) and =(t1, t2). “Atomic formula” thus means any formula of this
form.

The other cases of the definition give rules for constructing new formulas
out of formulas already constructed. At the second stage, we can use them to
construct formulas out of atomic formulas. At the third stage, we construct
new formulas from the atomic formulas and those obtained in the second stage,
and so on. A formula is anything that is eventually constructed at such a stage,
and nothing else.

By convention, we write = between its arguments and leave out the paren-
theses: t1 = t2 is an abbreviation for =(t1, t2). Moreover, ¬=(t1, t2) is ab-
breviated as t1 ̸= t2. When writing a formula (ψ ∗ χ) constructed from ψ, χ
using a two-place connective ∗, we will often leave out the outermost pair of
parentheses and write simply ψ ∗ χ.

introSome logic texts require that the variable x must occur in φ in order for
∃xφ and ∀xφ to count as formulas. Nothing bad happens if you don’t require
this, and it makes things easier.

If we work in a language for a specific application, we will often write two-
place predicate symbols and function symbols between the respective terms,
e.g., t1 < t2 and (t1 + t2) in the language of arithmetic and t1 ∈ t2 in the
language of set theory. The successor function in the language of arithmetic
is even written conventionally after its argument: t′. Officially, however, these
are just conventional abbreviations for A20(t1, t2), f 20 (t1, t2), A20(t1, t2) and f10 (t),
respectively.

Definition 2.6 (Syntactic identity). The symbol ≡ expresses syntactic iden-
tity between strings of symbols, i.e., φ ≡ ψ iff φ and ψ are strings of symbols
of the same length and which contain the same symbol in each place.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 15

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

The ≡ symbol may be flanked by strings obtained by concatenation, e.g.,
φ ≡ (ψ ∨ χ) means: the string of symbols φ is the same string as the one
obtained by concatenating an opening parenthesis, the string ψ, the ∨ symbol,
the string χ, and a closing parenthesis, in this order. If this is the case, then
we know that the first symbol of φ is an opening parenthesis, φ contains ψ as a
substring (starting at the second symbol), that substring is followed by ∨, etc.

As terms and formulas are built up from basic elements via inductive def-
initions, we can use the following induction principles to prove things about
them.

Lemma 2.7 (Principle of induction on terms). fol:syn:frm:

lem:trmind

Let L be a first-order
language. If some property P holds in all of the following cases, then P (t) for
every t ∈ Trm(L).

1. P (v) for every variable v,

2. P (a) for every constant symbol a of L,

3. If t1, . . . , tn ∈ Trm(L), f is an n-place function symbol of L, and P (t1), . . . , P (tn),
then P (f(t1, . . . , tn)).

Problem 2.1. Prove Lemma 2.7.

Lemma 2.8 (Principle of induction on formulas). fol:syn:frm:

thm:frmind

Let L be a first-order
language. If some property P holds for all the atomic formulas and is such that

1. φ is an atomic formula.

2. it holds for ¬φ whenever it holds for φ;

3. it holds for (φ ∧ ψ) whenever it holds for φ and ψ;

4. it holds for (φ ∨ ψ) whenever it holds for φ and ψ;

5. it holds for (φ→ ψ) whenever it holds for φ and ψ;

6. it holds for (φ↔ ψ) whenever it holds for φ and ψ;

7. it holds for ∃xφ whenever it holds for φ;

8. it holds for ∀xφ whenever it holds for φ;

then P holds for all formulas φ ∈ Frm(L).

16 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2.4 Unique Readability

fol:syn:unq:
sec

explanationThe way we defined formulas guarantees that every formula has a unique read-
ing, i.e., there is essentially only one way of constructing it according to our
formation rules for formulas and only one way of “interpreting” it. If this were
not so, we would have ambiguous formulas, i.e., formulas that have more than
one reading or intepretation—and that is clearly something we want to avoid.
But more importantly, without this property, most of the definitions and proofs
we are going to give will not go through.

Perhaps the best way to make this clear is to see what would happen if we
had given bad rules for forming formulas that would not guarantee unique read-
ability. For instance, we could have forgotten the parentheses in the formation
rules for connectives, e.g., we might have allowed this:

If φ and ψ are formulas, then so is φ→ ψ.

Starting from an atomic formula θ, this would allow us to form θ→ θ. From
this, together with θ, we would get θ→ θ→ θ. But there are two ways to do
this:

1. We take θ to be φ and θ→ θ to be ψ.

2. We take φ to be θ→ θ and ψ is θ.

Correspondingly, there are two ways to “read” the formula θ→ θ→ θ. It is of
the form ψ→ χ where ψ is θ and χ is θ→ θ, but it is also of the form ψ→ χ
with ψ being θ→ θ and χ being θ.

If this happens, our definitions will not always work. For instance, when we
define the main operator of a formula, we say: in a formula of the form ψ→χ,
the main operator is the indicated occurrence of →. But if we can match the
formula θ → θ → θ with ψ → χ in the two different ways mentioned above,
then in one case we get the first occurrence of → as the main operator, and
in the second case the second occurrence. But we intend the main operator to
be a function of the formula, i.e., every formula must have exactly one main
operator occurrence.

Lemma 2.9. The number of left and right parentheses in a formula φ are
equal.

Proof. We prove this by induction on the way φ is constructed. This requires
two things: (a) We have to prove first that all atomic formulas have the prop-
erty in question (the induction basis). (b) Then we have to prove that when
we construct new formulas out of given formulas, the new formulas have the
property provided the old ones do.

Let l(φ) be the number of left parentheses, and r(φ) the number of right
parentheses in φ, and l(t) and r(t) similarly the number of left and right paren-
theses in a term t.

Problem 2.2. Prove that for any term t, l(t) = r(t).

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 17

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. φ ≡ ⊥: φ has 0 left and 0 right parentheses.

2. φ ≡ ⊤: φ has 0 left and 0 right parentheses.

3. φ ≡ R(t1, . . . , tn): l(φ) = 1+ l(t1)+ · · ·+ l(tn) = 1+r(t1)+ · · ·+r(tn) =
r(φ). Here we make use of the fact, left as an exercise, that l(t) = r(t)
for any term t.

4. φ ≡ t1 = t2: l(φ) = l(t1) + l(t2) = r(t1) + r(t2) = r(φ).

5. φ ≡ ¬ψ: By induction hypothesis, l(ψ) = r(ψ). Thus l(φ) = l(ψ) =
r(ψ) = r(φ).

6. φ ≡ (ψ ∗ χ): By induction hypothesis, l(ψ) = r(ψ) and l(χ) = r(χ).
Thus l(φ) = 1 + l(ψ) + l(χ) = 1 + r(ψ) + r(χ) = r(φ).

7. φ ≡ ∀xψ: By induction hypothesis, l(ψ) = r(ψ). Thus, l(φ) = l(ψ) =
r(ψ) = r(φ).

8. φ ≡ ∃xψ: Similarly.

Definition 2.10 (Proper prefix). A string of symbols ψ is a proper prefix
of a string of symbols φ if concatenating ψ and a non-empty string of symbols
yields φ.

Lemma 2.11. fol:syn:unq:

lem:no-prefix

If φ is a formula, and ψ is a proper prefix of φ, then ψ is not
a formula.

Proof. Exercise.

Problem 2.3. Prove Lemma 2.11.

Proposition 2.12. fol:syn:unq:

prop:unique-atomic

If φ is an atomic formula, then it satisfies one, and only
one of the following conditions.

1. φ ≡ ⊥.

2. φ ≡ ⊤.

3. φ ≡ R(t1, . . . , tn) where R is an n-place predicate symbol, t1, . . . , tn are
terms, and each of R, t1, . . . , tn is uniquely determined.

4. φ ≡ t1 = t2 where t1 and t2 are uniquely determined terms.

Proof. Exercise.

Problem 2.4. Prove Proposition 2.12 (Hint: Formulate and prove a version
of Lemma 2.11 for terms.)

Proposition 2.13 (Unique Readability). Every formula satisfies one, and
only one of the following conditions.

18 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. φ is atomic.

2. φ is of the form ¬ψ.

3. φ is of the form (ψ ∧ χ).

4. φ is of the form (ψ ∨ χ).

5. φ is of the form (ψ→ χ).

6. φ is of the form (ψ↔ χ).

7. φ is of the form ∀xψ.

8. φ is of the form ∃xψ.

Moreover, in each case ψ, or ψ and χ, are uniquely determined. This means
that, e.g., there are no different pairs ψ, χ and ψ′, χ′ so that φ is both of the
form (ψ→ χ) and (ψ′ → χ′).

Proof. The formation rules require that if a formula is not atomic, it must
start with an opening parenthesis (, ¬, or a quantifier. On the other hand,
every formula that starts with one of the following symbols must be atomic:
a predicate symbol, a function symbol, a constant symbol, ⊥, ⊤.

So we really only have to show that if φ is of the form (ψ ∗ χ) and also of
the form (ψ′ ∗′ χ′), then ψ ≡ ψ′, χ ≡ χ′, and ∗ = ∗′.

So suppose both φ ≡ (ψ ∗χ) and φ ≡ (ψ′ ∗′ χ′). Then either ψ ≡ ψ′ or not.
If it is, clearly ∗ = ∗′ and χ ≡ χ′, since they then are substrings of φ that begin
in the same place and are of the same length. The other case is ψ ̸≡ ψ′. Since
ψ and ψ′ are both substrings of φ that begin at the same place, one must be
a proper prefix of the other. But this is impossible by Lemma 2.11.

2.5 Main operator of a Formula

fol:syn:mai:
sec

explanationIt is often useful to talk about the last operator used in constructing a for-
mula φ. This operator is called the main operator of φ. Intuitively, it is the
“outermost” operator of φ. For example, the main operator of ¬φ is ¬, the
main operator of (φ ∨ ψ) is ∨, etc.

Definition 2.14 (Main operator).fol:syn:mai:

def:main-op

The main operator of a formula φ is
defined as follows:

1. φ is atomic: φ has no main operator.

2. φ ≡ ¬ψ: the main operator of φ is ¬.

3. φ ≡ (ψ ∧ χ): the main operator of φ is ∧.

4. φ ≡ (ψ ∨ χ): the main operator of φ is ∨.

5. φ ≡ (ψ→ χ): the main operator of φ is →.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 19

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6. φ ≡ (ψ↔ χ): the main operator of φ is ↔.

7. φ ≡ ∀xψ: the main operator of φ is ∀.

8. φ ≡ ∃xψ: the main operator of φ is ∃.

In each case, we intend the specific indicated occurrence of the main oper-
ator in the formula. For instance, since the formula ((θ→ α) → (α→ θ)) is of
the form (ψ→ χ) where ψ is (θ→ α) and χ is (α→ θ), the second occurrence
of → is the main operator.

explanation This is a recursive definition of a function which maps all non-atomic formu-
las to their main operator occurrence. Because of the way formulas are defined
inductively, every formula φ satisfies one of the cases in Definition 2.14. This
guarantees that for each non-atomic formula φ a main operator exists. Because
each formula satisfies only one of these conditions, and because the smaller for-
mulas from which φ is constructed are uniquely determined in each case, the
main operator occurrence of φ is unique, and so we have defined a function.

We call formulas by the names in Table 2.1 depending on which symbol
their main operator is.

Main operator Type of formula Example
none atomic (formula) ⊥, ⊤, R(t1, . . . , tn), t1 = t2
¬ negation ¬φ
∧ conjunction (φ ∧ ψ)
∨ disjunction (φ ∨ ψ)
→ conditional (φ→ ψ)
↔ biconditional (φ↔ ψ)
∀ universal (formula) ∀xφ
∃ existential (formula) ∃xφ

Table 2.1: Main operator and names of formulas

fol:syn:mai:

tab:main-op
2.6 Subformulas

fol:syn:sbf:
sec

explanation It is often useful to talk about the formulas that “make up” a given formula.
We call these its subformulas. Any formula counts as a subformula of itself; a
subformula of φ other than φ itself is a proper subformula.

Definition 2.15 (Immediate Subformula). If φ is a formula, the immedi-
ate subformulas of φ are defined inductively as follows:

1. Atomic formulas have no immediate subformulas.

2. φ ≡ ¬ψ: The only immediate subformula of φ is ψ.

3. φ ≡ (ψ ∗χ): The immediate subformulas of φ are ψ and χ (∗ is any one
of the two-place connectives).

4. φ ≡ ∀xψ: The only immediate subformula of φ is ψ.

20 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

5. φ ≡ ∃xψ: The only immediate subformula of φ is ψ.

Definition 2.16 (Proper Subformula). If φ is a formula, the proper sub-
formulas of φ are defined recursively as follows:

1. Atomic formulas have no proper subformulas.

2. φ ≡ ¬ψ: The proper subformulas of φ are ψ together with all proper
subformulas of ψ.

3. φ ≡ (ψ ∗ χ): The proper subformulas of φ are ψ, χ, together with all
proper subformulas of ψ and those of χ.

4. φ ≡ ∀xψ: The proper subformulas of φ are ψ together with all proper
subformulas of ψ.

5. φ ≡ ∃xψ: The proper subformulas of φ are ψ together with all proper
subformulas of ψ.

Definition 2.17 (Subformula). The subformulas of φ are φ itself together
with all its proper subformulas.

explanationNote the subtle difference in how we have defined immediate subformulas
and proper subformulas. In the first case, we have directly defined the imme-
diate subformulas of a formula φ for each possible form of φ. It is an explicit
definition by cases, and the cases mirror the inductive definition of the set of
formulas. In the second case, we have also mirrored the way the set of all
formulas is defined, but in each case we have also included the proper subfor-
mulas of the smaller formulas ψ, χ in addition to these formulas themselves.
This makes the definition recursive. In general, a definition of a function on
an inductively defined set (in our case, formulas) is recursive if the cases in the
definition of the function make use of the function itself. To be well defined,
we must make sure, however, that we only ever use the values of the function
for arguments that come “before” the one we are defining—in our case, when
defining “proper subformula” for (ψ ∗ χ) we only use the proper subformulas
of the “earlier” formulas ψ and χ.

Proposition 2.18.fol:syn:sbf:

prop:subfrm-trans

Suppose ψ is a subformula of φ and χ is a subformula of
ψ. Then χ is a subformula of φ. In other words, the subformula relation is
transitive.

Problem 2.5. Prove Proposition 2.18.

Proposition 2.19.fol:syn:sbf:

prop:count-subfrms

Suppose φ is a formula with n connectives and quantifiers.
Then φ has at most 2n+ 1 subformulas.

Problem 2.6. Prove Proposition 2.19.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 21

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2.7 Formation Sequences

fol:syn:fseq:
sec

Defining formulas via an inductive definition, and the complementary tech-
nique of proving properties of formulas via induction, is an elegant and effi-
cient approach. However, it can also be useful to consider a more bottom-up,
step-by-step approach to the construction of formulas, which we do here using
the notion of a formation sequence. To show how terms and formulas can be
introduced in this way without needing to refer to their inductive definitions,
we first introduce the notion of an arbitrary string of symbols drawn from some
language L.

Definition 2.20 (Strings). fol:syn:fseq:

defn:string

Suppose L is a first-order language. An L-string
is a finite sequence of symbols of L. Where the language L is clearly fixed by
the context, we will often refer to a L-string simply as a string.

Example 2.21. For any first-order language L, all L-formulas are L-strings,
but not conversely. For example,

)(v0 →∃

is an L-string but not an L-formula.

Definition 2.22 (Formation sequences for terms). fol:syn:fseq:

defn:fseq-trm

A finite sequence of
L-strings ⟨t0, . . . , tn⟩ is a formation sequence for a term t if t ≡ tn and for all
i ≤ n, either ti is a variable or a constant symbol, or L contains a k-ary function
symbol f and there exist m0, . . . ,mk < i such that ti ≡ f(tm0 , . . . , tmk

).

Example 2.23. The sequence

⟨c0, v0, f 20 (c0, v0), f 10 (f 20 (c0, v0))⟩

is a formation sequence for the term f 10 (f 20 (c0, v0)), as is

⟨v0, c0, f 20 (c0, v0), f 10 (f 20 (c0, v0))⟩.

Definition 2.24 (Formation sequences for formulas). fol:syn:fseq:

defn:fseq-frm

A finite sequence
of L-strings ⟨φ0, . . . , φn⟩ is a formation sequence for φ if φ ≡ φn and for all
i ≤ n, either φi is an atomic formula or there exist j, k < i and a variable x
such that one of the following holds:

1. φi ≡ ¬φj .

2. φi ≡ (φj ∧ φk).

3. φi ≡ (φj ∨ φk).

4. φi ≡ (φj → φk).

5. φi ≡ (φj ↔ φk).

22 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6. φi ≡ ∀xφj .

7. φi ≡ ∃xφj .

Example 2.25.

⟨A10(v0),A11(c1), (A11(c1) ∧ A10(v0)),∃v0 (A11(c1) ∧ A10(v0))⟩

is a formation sequence of ∃v0 (A11(c1) ∧ A10(v0)), as is

⟨A10(v0),A11(c1), (A11(c1) ∧ A10(v0)),A11(c1),

∀v1 A10(v0),∃v0 (A11(c1) ∧ A10(v0))⟩.

As can be seen from the second example, formation sequences may contain
“junk”: formulas which are redundant or do not contribute to the construction.

Proposition 2.26.fol:syn:fseq:

prop:formed

Every formula φ in Frm(L) has a formation sequence.

Proof. Suppose φ is atomic. Then the sequence ⟨φ⟩ is a formation sequence
for φ. Now suppose that ψ and χ have formation sequences ⟨ψ0, . . . , ψn⟩ and
⟨χ0, . . . , χm⟩ respectively.

1. If φ ≡ ¬ψ, then ⟨ψ0, . . . , ψn,¬ψn⟩ is a formation sequence for φ.

2. If φ ≡ (ψ ∧ χ), then ⟨ψ0, . . . , ψn, χ0, . . . , χm, (ψn ∧ χm)⟩ is a formation
sequence for φ.

3. If φ ≡ (ψ ∨ χ), then ⟨ψ0, . . . , ψn, χ0, . . . , χm, (ψn ∨ χm)⟩ is a formation
sequence for φ.

4. If φ ≡ (ψ→ χ), then ⟨ψ0, . . . , ψn, χ0, . . . , χm, (ψn → χm)⟩ is a formation
sequence for φ.

5. If φ ≡ (ψ↔ χ), then ⟨ψ0, . . . , ψn, χ0, . . . , χm, (ψn ↔ χm)⟩ is a formation
sequence for φ.

6. If φ ≡ ∀xψ, then ⟨ψ0, . . . , ψn,∀xψn⟩ is a formation sequence for φ.

7. If φ ≡ ∃xψ, then ⟨ψ0, . . . , ψn,∃xψn⟩ is a formation sequence for φ.

By the principle of induction on formulas, every formula has a formation se-
quence.

We can also prove the converse. This is important because it shows that
our two ways of defining formulas are equivalent: they give the same results.
It also means that we can prove theorems about formulas by using ordinary
induction on the length of formation sequences.

Lemma 2.27.fol:syn:fseq:

lem:fseq-init

Suppose that ⟨φ0, . . . , φn⟩ is a formation sequence for φn, and
that k ≤ n. Then ⟨φ0, . . . , φk⟩ is a formation sequence for φk.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 23

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. Exercise.

Problem 2.7. Prove Lemma 2.27.

Theorem 2.28. fol:syn:fseq:

thm:fseq-frm-equiv

Frm(L) is the set of all expressions (strings of symbols) in
the language L with a formation sequence.

Proof. Let F be the set of all strings of symbols in the language L that have
a formation sequence. We have seen in Proposition 2.26 that Frm(L) ⊆ F , so
now we prove the converse.

Suppose φ has a formation sequence ⟨φ0, . . . , φn⟩. We prove that φ ∈
Frm(L) by strong induction on n. Our induction hypothesis is that every
string of symbols with a formation sequence of length m < n is in Frm(L). By
the definition of a formation sequence, either φ ≡ φn is atomic or there must
exist j, k < n such that one of the following is the case:

1. φ ≡ ¬φj .

2. φ ≡ (φj ∧ φk).

3. φ ≡ (φj ∨ φk).

4. φ ≡ (φj → φk).

5. φ ≡ (φj ↔ φk).

6. φ ≡ ∀xφj .

7. φ ≡ ∃xφj .

Now we reason by cases. If φ is atomic then φn ∈ Frm(L0). Suppose in-
stead that φ ≡ (φj ∧ φk). By Lemma 2.27, ⟨φ0, . . . , φj⟩ and ⟨φ0, . . . , φk⟩ are
formation sequences for φj and φk, respectively. Since these are proper ini-
tial subsequences of the formation sequence for φ, they both have length less
than n. Therefore by the induction hypothesis, φj and φk are in Frm(L0), and
by the definition of a formula, so is (φj∧φk). The other cases follow by parallel
reasoning.

Formation sequences for terms have similar properties to those for formulas.

Proposition 2.29. fol:syn:fseq:

prop:fseq-trm-equiv

Trm(L) is the set of all expressions t in the language L
such that there exists a (term) formation sequence for t.

Proof. Exercise.

Problem 2.8. Prove Proposition 2.29. Hint: use a similar strategy to that
used in the proof of Theorem 2.28.

24 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

There are two types of “junk” that can appear in formation sequences:
repeated elements, and elements that are irrelevant to the construction of the
formation or term. We can eliminate both by looking at minimal formation
sequences.

Definition 2.30 (Minimal formation sequences).fol:syn:fseq:

defn:minimal-fseq

A formation sequence
⟨φ0, . . . , φn⟩ for φ is a minimal formation sequence for φ if for every other
formation sequence s for φ, the length of s is greater than or equal to n+ 1.

Proposition 2.31.fol:syn:fseq:

prop:subformula-equivs

The following are equivalent:

1. ψ is a sub-formula of φ.

2. ψ occurs in every formation sequence of φ.

3. ψ occurs in a minimal formation sequence of φ.

Proof. Exercise.

Problem 2.9. Prove Proposition 2.31.

Historical Remarks Formation sequences were introduced by Raymond
Smullyan in his textbook First-Order Logic (Smullyan, 1968). Additional prop-
erties of formation sequences were established by Zuckerman (1973).

2.8 Free Variables and Sentences

fol:syn:fvs:
sec

Definition 2.32 (Free occurrences of a variable).fol:syn:fvs:

defn:free-occ

The free occurrences
of a variable in a formula are defined inductively as follows:

1. φ is atomic: all variable occurrences in φ are free.

2. φ ≡ ¬ψ: the free variable occurrences of φ are exactly those of ψ.

3. φ ≡ (ψ ∗ χ): the free variable occurrences of φ are those in ψ together
with those in χ.

4. φ ≡ ∀xψ: the free variable occurrences in φ are all of those in ψ except
for occurrences of x.

5. φ ≡ ∃xψ: the free variable occurrences in φ are all of those in ψ except
for occurrences of x.

Definition 2.33 (Bound Variables). An occurrence of a variable in a for-
mula φ is bound if it is not free.

Problem 2.10. Give an inductive definition of the bound variable occurrences
along the lines of Definition 2.32.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 25

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 2.34 (Scope). If ∀xψ is an occurrence of a subformula in a for-
mula φ, then the corresponding occurrence of ψ in φ is called the scope of the
corresponding occurrence of ∀x. Similarly for ∃x.

If ψ is the scope of a quantifier occurrence ∀x or ∃x in φ, then the free oc-
currences of x in ψ are bound in ∀xψ and ∃xψ. We say that these occurrences
are bound by the mentioned quantifier occurrence.

Example 2.35. Consider the following formula:

∃v0 A20(v0, v1)︸ ︷︷ ︸
ψ

ψ represents the scope of ∃v0. The quantifier binds the occurrence of v0 in ψ,
but does not bind the occurrence of v1. So v1 is a free variable in this case.

We can now see how this might work in a more complicated formula φ:

∀v0 (A10(v0) → A20(v0, v1))︸ ︷︷ ︸
ψ

→∃v1 (A21(v0, v1) ∨ ∀v0

θ︷ ︸︸ ︷
¬A11(v0))︸ ︷︷ ︸

χ

ψ is the scope of the first ∀v0, χ is the scope of ∃v1, and θ is the scope of
the second ∀v0. The first ∀v0 binds the occurrences of v0 in ψ, ∃v1 binds the
occurrence of v1 in χ, and the second ∀v0 binds the occurrence of v0 in θ. The
first occurrence of v1 and the fourth occurrence of v0 are free in φ. The last
occurrence of v0 is free in θ, but bound in χ and φ.

Definition 2.36 (Sentence). A formula φ is a sentence iff it contains no free
occurrences of variables.

2.9 Substitution

fol:syn:sub:
sec

Definition 2.37 (Substitution in a term). We define s[t/x], the result of
substituting t for every occurrence of x in s, recursively:

1. s ≡ c: s[t/x] is just s.

2. s ≡ y: s[t/x] is also just s, provided y is a variable and y ̸≡ x.

3. s ≡ x: s[t/x] is t.

4. s ≡ f(t1, . . . , tn): s[t/x] is f(t1[t/x], . . . , tn[t/x]).

Definition 2.38. A term t is free for x in φ if none of the free occurrences
of x in φ occur in the scope of a quantifier that binds a variable in t.

Example 2.39.

26 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. v8 is free for v1 in ∃v3A24(v3, v1)

2. f 21 (v1, v2) is not free for v0 in ∀v2A24(v0, v2)

Definition 2.40 (Substitution in a formula). If φ is a formula, x is a vari-
able, and t is a term free for x in φ, then φ[t/x] is the result of substituting t
for all free occurrences of x in φ.

1. φ ≡ ⊥: φ[t/x] is ⊥.

2. φ ≡ ⊤: φ[t/x] is ⊤.

3. φ ≡ P (t1, . . . , tn): φ[t/x] is P (t1[t/x], . . . , tn[t/x]).

4. φ ≡ t1 = t2: φ[t/x] is t1[t/x] = t2[t/x].

5. φ ≡ ¬ψ: φ[t/x] is ¬ψ[t/x].

6. φ ≡ (ψ ∧ χ): φ[t/x] is (ψ[t/x] ∧ χ[t/x]).

7. φ ≡ (ψ ∨ χ): φ[t/x] is (ψ[t/x] ∨ χ[t/x]).

8. φ ≡ (ψ→ χ): φ[t/x] is (ψ[t/x] → χ[t/x]).

9. φ ≡ (ψ↔ χ): φ[t/x] is (ψ[t/x] ↔ χ[t/x]).

10. φ ≡ ∀y ψ: φ[t/x] is ∀y ψ[t/x], provided y is a variable other than x;
otherwise φ[t/x] is just φ.

11. φ ≡ ∃y ψ: φ[t/x] is ∃y ψ[t/x], provided y is a variable other than x;
otherwise φ[t/x] is just φ.

explanationNote that substitution may be vacuous: If x does not occur in φ at all, then
φ[t/x] is just φ.

The restriction that tmust be free for x in φ is necessary to exclude cases like
the following. If φ ≡ ∃y x < y and t ≡ y, then φ[t/x] would be ∃y y < y. In this
case the free variable y is “captured” by the quantifier ∃y upon substitution,
and that is undesirable. For instance, we would like it to be the case that
whenever ∀xψ holds, so does ψ[t/x]. But consider ∀x∃y x < y (here ψ is
∃y x < y). It is a sentence that is true about, e.g., the natural numbers: for
every number x there is a number y greater than it. If we allowed y as a
possible substitution for x, we would end up with ψ[y/x] ≡ ∃y y < y, which is
false. We prevent this by requiring that none of the free variables in t would
end up being bound by a quantifier in φ.

We often use the following convention to avoid cumbersome notation: If
φ is a formula which may contain the variable x free, we also write φ(x) to
indicate this. When it is clear which φ and x we have in mind, and t is a term
(assumed to be free for x in φ(x)), then we write φ(t) as short for φ[t/x]. So
for instance, we might say, “we call φ(t) an instance of ∀xφ(x).” By this we
mean that if φ is any formula, x a variable, and t a term that’s free for x in φ,
then φ[t/x] is an instance of ∀xφ.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 27

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 3

Semantics of First-Order Logic

3.1 Introduction

fol:syn:its:
sec

Giving the meaning of expressions is the domain of semantics. The central
concept in semantics is that of satisfaction in a structure. A structure gives
meaning to the building blocks of the language: a domain is a non-empty
set of objects. The quantifiers are interpreted as ranging over this domain,
constant symbols are assigned elements in the domain, function symbols are
assigned functions from the domain to itself, and predicate symbols are as-
signed relations on the domain. The domain together with assignments to the
basic vocabulary constitutes a structure. Variables may appear in formulas,
and in order to give a semantics, we also have to assign elements of the do-
main to them—this is a variable assignment. The satisfaction relation, finally,
brings these together. A formula may be satisfied in a structure M relative
to a variable assignment s, written as M, s ⊨ φ. This relation is also defined
by induction on the structure of φ, using the truth tables for the logical con-
nectives to define, say, satisfaction of (φ ∧ ψ) in terms of satisfaction (or not)
of φ and ψ. It then turns out that the variable assignment is irrelevant if
the formula φ is a sentence, i.e., has no free variables, and so we can talk of
sentences being simply satisfied (or not) in structures.

On the basis of the satisfaction relation M ⊨ φ for sentences we can then de-
fine the basic semantic notions of validity, entailment, and satisfiability. A sen-
tence is valid, ⊨ φ, if every structure satisfies it. It is entailed by a set of
sentences, Γ ⊨ φ, if every structure that satisfies all the sentences in Γ also
satisfies φ. And a set of sentences is satisfiable if some structure satisfies all
sentences in it at the same time. Because formulas are inductively defined, and
satisfaction is in turn defined by induction on the structure of formulas, we can
use induction to prove properties of our semantics and to relate the semantic
notions defined.

28

3.2 Structures for First-order Languages

fol:syn:str:
sec

explanationFirst-order languages are, by themselves, uninterpreted: the constant symbols,
function symbols, and predicate symbols have no specific meaning attached to
them. Meanings are given by specifying a structure. It specifies the domain, i.e.,
the objects which the constant symbols pick out, the function symbols operate
on, and the quantifiers range over. In addition, it specifies which constant
symbols pick out which objects, how a function symbol maps objects to objects,
and which objects the predicate symbols apply to. Structures are the basis for
semantic notions in logic, e.g., the notion of consequence, validity, satisfiability.
They are variously called “structures,” “interpretations,” or “models” in the
literature.

Definition 3.1 (Structures). A structure M, for a language L of first-order
logic consists of the following elements:

1. Domain: a non-empty set, |M|

2. Interpretation of constant symbols: for each constant symbol c of L, an el-
ement cM ∈ |M|

3. Interpretation of predicate symbols: for each n-place predicate symbol R
of L (other than =), an n-place relation RM ⊆ |M|n

4. Interpretation of function symbols: for each n-place function symbol f of
L, an n-place function fM : |M|n → |M|

Example 3.2. A structure M for the language of arithmetic consists of a set,
an element of |M|, 0M, as interpretation of the constant symbol 0, a one-
place function ′M : |M| → |M|, two two-place functions +M and ×M, both

|M|2 → |M|, and a two-place relation <M ⊆ |M|2.
An obvious example of such a structure is the following:

1. |N| = N

2. 0N = 0

3. ′N(n) = n+ 1 for all n ∈ N

4. +N(n,m) = n+m for all n,m ∈ N

5. ×N(n,m) = n ·m for all n,m ∈ N

6. <N = {⟨n,m⟩ : n ∈ N,m ∈ N, n < m}

The structure N for LA so defined is called the standard model of arithmetic,
because it interprets the non-logical constants of LA exactly how you would
expect.

However, there are many other possible structures for LA. For instance,
we might take as the domain the set Z of integers instead of N, and define the
interpretations of 0, ′, +, ×, < accordingly. But we can also define structures
for LA which have nothing even remotely to do with numbers.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 29

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Example 3.3. A structure M for the language LZ of set theory requires just
a set and a single-two place relation. So technically, e.g., the set of people plus
the relation “x is older than y” could be used as a structure for LZ , as well as
N together with n ≥ m for n,m ∈ N.

A particularly interesting structure for LZ in which the elements of the
domain are actually sets, and the interpretation of ∈ actually is the relation
“x is an element of y” is the structure HF of hereditarily finite sets:

1. |HF| = ∅ ∪ ℘(∅) ∪ ℘(℘(∅)) ∪ ℘(℘(℘(∅))) ∪ . . . ;

2. ∈HF = {⟨x, y⟩ : x, y ∈ |HF| , x ∈ y}.

digression The stipulations we make as to what counts as a structure impact our
logic. For example, the choice to prevent empty domains ensures, given the
usual account of satisfaction (or truth) for quantified sentences, that ∃x (φ(x)∨
¬φ(x)) is valid—that is, a logical truth. And the stipulation that all constant
symbols must refer to an object in the domain ensures that the existential
generalization is a sound pattern of inference: φ(a), therefore ∃xφ(x). If we
allowed names to refer outside the domain, or to not refer, then we would be on
our way to a free logic, in which existential generalization requires an additional
premise: φ(a) and ∃xx = a, therefore ∃xφ(x).

3.3 Covered Structures for First-order Languages

fol:syn:cov:
sec

explanation Recall that a term is closed if it contains no variables.

Definition 3.4 (Value of closed terms). If t is a closed term of the lan-
guage L and M is a structure for L, the value ValM(t) is defined as follows:

1. If t is just the constant symbol c, then ValM(c) = cM.

2. If t is of the form f(t1, . . . , tn), then

ValM(t) = fM(ValM(t1), . . . ,ValM(tn)).

Definition 3.5 (Covered structure). A structure is covered if every ele-
ment of the domain is the value of some closed term.

Example 3.6. Let L be the language with constant symbols zero, one, two,
. . . , the binary predicate symbol <, and the binary function symbols + and
×. Then a structure M for L is the one with domain |M| = {0, 1, 2, . . .} and
assignments zeroM = 0, oneM = 1, twoM = 2, and so forth. For the binary
relation symbol <, the set <M is the set of all pairs ⟨c1, c2⟩ ∈ |M|2 such that
c1 is less than c2: for example, ⟨1, 3⟩ ∈ <M but ⟨2, 2⟩ /∈ <M. For the binary
function symbol +, define +M in the usual way—for example, +M(2, 3) maps
to 5, and similarly for the binary function symbol ×. Hence, the value of

30 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

f our is just 4, and the value of ×(two,+(three, zero)) (or in infix notation,
two × (three + zero)) is

ValM(×(two,+(three, zero)) =

= ×M(ValM(two),ValM(+(three, zero)))

= ×M(ValM(two),+M(ValM(three),ValM(zero)))

= ×M(twoM,+M(threeM, zeroM))

= ×M(2,+M(3, 0))

= ×M(2, 3)

= 6

Problem 3.1. Is N, the standard model of arithmetic, covered? Explain.

3.4 Satisfaction of a Formula in a Structure

fol:syn:sat:
sec

explanationThe basic notion that relates expressions such as terms and formulas, on the one
hand, and structures on the other, are those of value of a term and satisfaction
of a formula. Informally, the value of a term is an element of a structure—if the
term is just a constant, its value is the object assigned to the constant by the
structure, and if it is built up using function symbols, the value is computed
from the values of constants and the functions assigned to the functions in the
term. A formula is satisfied in a structure if the interpretation given to the
predicates makes the formula true in the domain of the structure. This notion
of satisfaction is specified inductively: the specification of the structure directly
states when atomic formulas are satisfied, and we define when a complex for-
mula is satisfied depending on the main connective or quantifier and whether
or not the immediate subformulas are satisfied.

The case of the quantifiers here is a bit tricky, as the immediate subformula
of a quantified formula has a free variable, and structures don’t specify the
values of variables. In order to deal with this difficulty, we also introduce
variable assignments and define satisfaction not with respect to a structure
alone, but with respect to a structure plus a variable assignment.

Definition 3.7 (Variable Assignment). A variable assignment s for a struc-
ture M is a function which maps each variable to an element of |M|, i.e.,
s : Var → |M|.

explanationA structure assigns a value to each constant symbol, and a variable assign-
ment to each variable. But we want to use terms built up from them to also
name elements of the domain. For this we define the value of terms induc-
tively. For constant symbols and variables the value is just as the structure
or the variable assignment specifies it; for more complex terms it is computed
recursively using the functions the structure assigns to the function symbols.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 31

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 3.8 (Value of Terms). If t is a term of the language L, M is a
structure for L, and s is a variable assignment for M, the value ValMs (t) is
defined as follows:

1. t ≡ c: ValMs (t) = cM.

2. t ≡ x: ValMs (t) = s(x).

3. t ≡ f(t1, . . . , tn):

ValMs (t) = fM(ValMs (t1), . . . ,ValMs (tn)).

Definition 3.9 (x-Variant). If s is a variable assignment for a structure M,
then any variable assignment s′ for M which differs from s at most in what
it assigns to x is called an x-variant of s. If s′ is an x-variant of s we write
s′ ∼x s.

explanation Note that an x-variant of an assignment s does not have to assign something
different to x. In fact, every assignment counts as an x-variant of itself.

Definition 3.10. If s is a variable assignment for a structure M and m ∈ |M|,
then the assignment s[m/x] is the variable assignment defined by

s[m/x](y) =

{
m if y ≡ x

s(y) otherwise.

In other words, s[m/x] is the particular x-variant of s which assigns the
domain element m to x, and assigns the same things to variables other than x
that s does.

Definition 3.11 (Satisfaction). fol:syn:sat:

defn:satisfaction

Satisfaction of a formula φ in a structure M
relative to a variable assignment s, in symbols: M, s ⊨ φ, is defined recursively
as follows. (We write M, s ⊭ φ to mean “not M, s ⊨ φ.”)

1. φ ≡ ⊥: M, s ⊭ φ.

2. φ ≡ ⊤: M, s ⊨ φ.

3. φ ≡ R(t1, . . . , tn): M, s ⊨ φ iff ⟨ValMs (t1), . . . ,ValMs (tn)⟩ ∈ RM.

4. φ ≡ t1 = t2: M, s ⊨ φ iff ValMs (t1) = ValMs (t2).

5. φ ≡ ¬ψ: M, s ⊨ φ iff M, s ⊭ ψ.

6. φ ≡ (ψ ∧ χ): M, s ⊨ φ iff M, s ⊨ ψ and M, s ⊨ χ.

7. φ ≡ (ψ ∨ χ): M, s ⊨ φ iff M, s ⊨ ψ or M, s ⊨ χ (or both).

8. φ ≡ (ψ→ χ): M, s ⊨ φ iff M, s ⊭ ψ or M, s ⊨ χ (or both).

32 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

9. φ ≡ (ψ↔χ): M, s ⊨ φ iff either both M, s ⊨ ψ and M, s ⊨ χ, or neither
M, s ⊨ ψ nor M, s ⊨ χ.

10. φ ≡ ∀xψ: M, s ⊨ φ iff for every element m ∈ |M|, M, s[m/x] ⊨ ψ.

11. φ ≡ ∃xψ: M, s ⊨ φ iff for at least one element m ∈ |M|, M, s[m/x] ⊨ ψ.

explanationThe variable assignments are important in the last two clauses. We cannot
define satisfaction of ∀xψ(x) by “for all m ∈ |M|, M ⊨ ψ(m).” We cannot
define satisfaction of ∃xψ(x) by “for at least one m ∈ |M|, M ⊨ ψ(m).” The
reason is that if m ∈ |M|, it is not a symbol of the language, and so ψ(m) is
not a formula (that is, ψ[m/x] is undefined). We also cannot assume that
we have constant symbols or terms available that name every element of M,
since there is nothing in the definition of structures that requires it. In the
standard language, the set of constant symbols is denumerable, so if |M| is not
enumerable there aren’t even enough constant symbols to name every object.

We solve this problem by introducing variable assignments, which allow us
to link variables directly with elements of the domain. Then instead of saying
that, e.g., ∃xψ(x) is satisfied in M iff for at least one m ∈ |M|, we say it is
satisfied in M relative to s iff ψ(x) is satisfied relative to s[m/x] for at least
one m ∈ |M|.

Example 3.12. Let L = {a, b, f, R} where a and b are constant symbols, f is
a two-place function symbol, and R is a two-place predicate symbol. Consider
the structure M defined by:

1. |M| = {1, 2, 3, 4}

2. aM = 1

3. bM = 2

4. fM(x, y) = x+ y if x+ y ≤ 3 and = 3 otherwise.

5. RM = {⟨1, 1⟩, ⟨1, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩}

The function s(x) = 1 that assigns 1 ∈ |M| to every variable is a variable
assignment for M.

Then

ValMs (f(a, b)) = fM(ValMs (a),ValMs (b)).

Since a and b are constant symbols, ValMs (a) = aM = 1 and ValMs (b) = bM = 2.
So

ValMs (f(a, b)) = fM(1, 2) = 1 + 2 = 3.

To compute the value of f(f(a, b), a) we have to consider

ValMs (f(f(a, b), a)) = fM(ValMs (f(a, b)),ValMs (a)) = fM(3, 1) = 3,

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 33

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

since 3 + 1 > 3. Since s(x) = 1 and ValMs (x) = s(x), we also have

ValMs (f(f(a, b), x)) = fM(ValMs (f(a, b)),ValMs (x)) = fM(3, 1) = 3,

An atomic formula R(t1, t2) is satisfied if the tuple of values of its ar-
guments, i.e., ⟨ValMs (t1),ValMs (t2)⟩, is an element of RM. So, e.g., we have
M, s ⊨ R(b, f(a, b)) since ⟨ValM(b),ValM(f(a, b))⟩ = ⟨2, 3⟩ ∈ RM, but M, s ⊭
R(x, f(a, b)) since ⟨1, 3⟩ /∈ RM[s].

To determine if a non-atomic formula φ is satisfied, you apply the clauses
in the inductive definition that applies to the main connective. For instance,
the main connective in R(a, a) → (R(b, x) ∨R(x, b)) is the →, and

M, s ⊨ R(a, a) → (R(b, x) ∨R(x, b)) iff

M, s ⊭ R(a, a) or M, s ⊨ R(b, x) ∨R(x, b)

Since M, s ⊨ R(a, a) (because ⟨1, 1⟩ ∈ RM) we can’t yet determine the answer
and must first figure out if M, s ⊨ R(b, x) ∨R(x, b):

M, s ⊨ R(b, x) ∨R(x, b) iff

M, s ⊨ R(b, x) or M, s ⊨ R(x, b)

And this is the case, since M, s ⊨ R(x, b) (because ⟨1, 2⟩ ∈ RM).

Recall that an x-variant of s is a variable assignment that differs from s at
most in what it assigns to x. For every element of |M|, there is an x-variant
of s:

s1 = s[1/x], s2 = s[2/x],

s3 = s[3/x], s4 = s[4/x].

So, e.g., s2(x) = 2 and s2(y) = s(y) = 1 for all variables y other than x. These
are all the x-variants of s for the structure M, since |M| = {1, 2, 3, 4}. Note,
in particular, that s1 = s (s is always an x-variant of itself).

To determine if an existentially quantified formula ∃xφ(x) is satisfied, we
have to determine if M, s[m/x] ⊨ φ(x) for at least one m ∈ |M|. So,

M, s ⊨ ∃x (R(b, x) ∨R(x, b)),

since M, s[1/x] ⊨ R(b, x) ∨R(x, b) (s[3/x] would also fit the bill). But,

M, s ⊭ ∃x (R(b, x) ∧R(x, b))

since, whichever m ∈ |M| we pick, M, s[m/x] ⊭ R(b, x) ∧R(x, b).
To determine if a universally quantified formula ∀xφ(x) is satisfied, we have

to determine if M, s[m/x] ⊨ φ(x) for all m ∈ |M|. So,

M, s ⊨ ∀x (R(x, a) →R(a, x)),

34 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

since M, s[m/x] ⊨ R(x, a) → R(a, x) for all m ∈ |M|. For m = 1, we have
M, s[1/x] ⊨ R(a, x) so the consequent is true; for m = 2, 3, and 4, we have
M, s[m/x] ⊭ R(x, a), so the antecedent is false. But,

M, s ⊭ ∀x (R(a, x) →R(x, a))

since M, s[2/x] ⊭ R(a, x)→R(x, a) (because M, s[2/x] ⊨ R(a, x) and M, s[2/x] ⊭
R(x, a)).

For a more complicated case, consider

∀x (R(a, x) →∃y R(x, y)).

Since M, s[3/x] ⊭ R(a, x) and M, s[4/x] ⊭ R(a, x), the interesting cases where
we have to worry about the consequent of the conditional are only m = 1
and = 2. Does M, s[1/x] ⊨ ∃y R(x, y) hold? It does if there is at least one
n ∈ |M| so that M, s[1/x][n/y] ⊨ R(x, y). In fact, if we take n = 1, we have
s[1/x][n/y] = s[1/y] = s. Since s(x) = 1, s(y) = 1, and ⟨1, 1⟩ ∈ RM, the
answer is yes.

To determine if M, s[2/x] ⊨ ∃y R(x, y), we have to look at the variable
assignments s[2/x][n/y]. Here, for n = 1, this assignment is s2 = s[2/x], which
does not satisfy R(x, y) (s2(x) = 2, s2(y) = 1, and ⟨2, 1⟩ /∈ RM). However,
consider s[2/x][3/y] = s2[3/y]. M, s2[3/y] ⊨ R(x, y) since ⟨2, 3⟩ ∈ RM, and so
M, s2 ⊨ ∃y R(x, y).

So, for all n ∈ |M|, either M, s[m/x] ⊭ R(a, x) (if m = 3, 4) or M, s[m/x] ⊨
∃y R(x, y) (if m = 1, 2), and so

M, s ⊨ ∀x (R(a, x) →∃y R(x, y)).

On the other hand,

M, s ⊭ ∃x (R(a, x) ∧ ∀y R(x, y)).

We have M, s[m/x] ⊨ R(a, x) only for m = 1 and m = 2. But for both
of these values of m, there is in turn an n ∈ |M|, namely n = 4, so that
M, s[m/x][n/y] ⊭ R(x, y) and so M, s[m/x] ⊭ ∀y R(x, y) for m = 1 and m = 2.
In sum, there is no m ∈ |M| such that M, s[m/x] ⊨ R(a, x) ∧ ∀y R(x, y).

Problem 3.2. Let L = {c, f, A} with one constant symbol, one one-place
function symbol and one two-place predicate symbol, and let the structure M
be given by

1. |M| = {1, 2, 3}

2. cM = 3

3. fM(1) = 2, fM(2) = 3, fM(3) = 2

4. AM = {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 3⟩}

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 35

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

(a) Let s(v) = 1 for all variables v. Find out whether

M, s ⊨ ∃x (A(f(z), c) →∀y (A(y, x) ∨A(f(y), x)))

Explain why or why not.
(b) Give a different structure and variable assignment in which the formula

is not satisfied.

3.5 Variable Assignments

fol:syn:ass:
sec

explanation A variable assignment s provides a value for every variable—and there are
infinitely many of them. This is of course not necessary. We require variable
assignments to assign values to all variables simply because it makes things a
lot easier. The value of a term t, and whether or not a formula φ is satisfied in
a structure with respect to s, only depend on the assignments s makes to the
variables in t and the free variables of φ. This is the content of the next two
propositions. To make the idea of “depends on” precise, we show that any two
variable assignments that agree on all the variables in t give the same value,
and that φ is satisfied relative to one iff it is satisfied relative to the other if
two variable assignments agree on all free variables of φ.

Proposition 3.13. fol:syn:ass:

prop:valindep

If the variables in a term t are among x1, . . . , xn, and

s1(xi) = s2(xi) for i = 1, . . . , n, then ValMs1 (t) = ValMs2 (t).

Proof. By induction on the complexity of t. For the base case, t can be a con-
stant symbol or one of the variables x1, . . . , xn. If t = c, then ValMs1 (t) = cM =

ValMs2 (t). If t = xi, s1(xi) = s2(xi) by the hypothesis of the proposition, and

so ValMs1 (t) = s1(xi) = s2(xi) = ValMs2 (t).
For the inductive step, assume that t = f(t1, . . . , tk) and that the claim

holds for t1, . . . , tk. Then

ValMs1 (t) = ValMs1 (f(t1, . . . , tk)) =

= fM(ValMs1 (t1), . . . ,ValMs1 (tk))

For j = 1, . . . , k, the variables of tj are among x1, . . . , xn. By induction

hypothesis, ValMs1 (tj) = ValMs2 (tj). So,

ValMs1 (t) = ValMs1 (f(t1, . . . , tk)) =

= fM(ValMs1 (t1), . . . ,ValMs1 (tk)) =

= fM(ValMs2 (t1), . . . ,ValMs2 (tk)) =

= ValMs2 (f(t1, . . . , tk)) = ValMs2 (t).

Proposition 3.14. fol:syn:ass:

prop:satindep

If the free variables in φ are among x1, . . . , xn, and
s1(xi) = s2(xi) for i = 1, . . . , n, then M, s1 ⊨ φ iff M, s2 ⊨ φ.

36 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. We use induction on the complexity of φ. For the base case, where φ is
atomic, φ can be: ⊤, ⊥, R(t1, . . . , tk) for a k-place predicate R and terms t1,
. . . , tk, or t1 = t2 for terms t1 and t2.

1. φ ≡ ⊤: both M, s1 ⊨ φ and M, s2 ⊨ φ.

2. φ ≡ ⊥: both M, s1 ⊭ φ and M, s2 ⊭ φ.

3. φ ≡ R(t1, . . . , tk): let M, s1 ⊨ φ. Then

⟨ValMs1 (t1), . . . ,ValMs1 (tk)⟩ ∈ RM.

For i = 1, . . . , k, ValMs1 (ti) = ValMs2 (ti) by Proposition 3.13. So we also

have ⟨ValMs2 (ti), . . . ,ValMs2 (tk)⟩ ∈ RM.

4. φ ≡ t1 = t2: suppose M, s1 ⊨ φ. Then ValMs1 (t1) = ValMs1 (t2). So,

ValMs2 (t1) = ValMs1 (t1) (by Proposition 3.13)

= ValMs1 (t2) (since M, s1 ⊨ t1 = t2)

= ValMs2 (t2) (by Proposition 3.13),

so M, s2 ⊨ t1 = t2.

Now assume M, s1 ⊨ ψ iff M, s2 ⊨ ψ for all formulas ψ less complex than φ.
The induction step proceeds by cases determined by the main operator of φ.
In each case, we only demonstrate the forward direction of the biconditional;
the proof of the reverse direction is symmetrical. In all cases except those for
the quantifiers, we apply the induction hypothesis to sub-formulas ψ of φ. The
free variables of ψ are among those of φ. Thus, if s1 and s2 agree on the free
variables of φ, they also agree on those of ψ, and the induction hypothesis
applies to ψ.

1. φ ≡ ¬ψ: if M, s1 ⊨ φ, then M, s1 ⊭ ψ, so by the induction hypothesis,
M, s2 ⊭ ψ, hence M, s2 ⊨ φ.

2. φ ≡ ψ ∧ χ: if M, s1 ⊨ φ, then M, s1 ⊨ ψ and M, s1 ⊨ χ, so by induction
hypothesis, M, s2 ⊨ ψ and M, s2 ⊨ χ. Hence, M, s2 ⊨ φ.

3. φ ≡ ψ ∨ χ: if M, s1 ⊨ φ, then M, s1 ⊨ ψ or M, s1 ⊨ χ. By induction
hypothesis, M, s2 ⊨ ψ or M, s2 ⊨ χ, so M, s2 ⊨ φ.

4. φ ≡ ψ→χ: if M, s1 ⊨ φ, then M, s1 ⊭ ψ or M, s1 ⊨ χ. By the induction
hypothesis, M, s2 ⊭ ψ or M, s2 ⊨ χ, so M, s2 ⊨ φ.

5. φ ≡ ψ ↔ χ: if M, s1 ⊨ φ, then either M, s1 ⊨ ψ and M, s1 ⊨ χ, or
M, s1 ⊭ ψ and M, s1 ⊭ χ. By the induction hypothesis, either M, s2 ⊨ ψ
and M, s2 ⊨ χ or M, s2 ⊭ ψ and M, s2 ⊭ χ. In either case, M, s2 ⊨ φ.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 37

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6. φ ≡ ∃xψ: if M, s1 ⊨ φ, there is an m ∈ |M| so that M, s1[m/x] ⊨ ψ. Let
s′1 = s1[m/x] and s′2 = s2[m/x]. The free variables of ψ are among x1,
. . . , xn, and x. s′1(xi) = s′2(xi), since s′1 and s′2 are x-variants of s1 and s2,
respectively, and by hypothesis s1(xi) = s2(xi). s

′
1(x) = s′2(x) = m by

the way we have defined s′1 and s′2. Then the induction hypothesis applies
to ψ and s′1, s′2, so M, s′2 ⊨ ψ. Hence, since s′2 = s2[m/x], there is an
m ∈ |M| such that M, s2[m/x] ⊨ ψ, and so M, s2 ⊨ φ.

7. φ ≡ ∀xψ: if M, s1 ⊨ φ, then for every m ∈ |M|, M, s1[m/x] ⊨ ψ.
We want to show that also, for every m ∈ |M|, M, s2[m/x] ⊨ ψ. So
let m ∈ |M| be arbitrary, and consider s′1 = s[m/x] and s′2 = s[m/x].
We have that M, s′1 ⊨ ψ. The free variables of ψ are among x1, . . . ,
xn, and x. s′1(xi) = s′2(xi), since s′1 and s′2 are x-variants of s1 and s2,
respectively, and by hypothesis s1(xi) = s2(xi). s

′
1(x) = s′2(x) = m by

the way we have defined s′1 and s′2. Then the induction hypothesis applies
to ψ and s′1, s′2, and we have M, s′2 ⊨ ψ. This applies to every m ∈ |M|,
i.e., M, s2[m/x] ⊨ ψ for all m ∈ |M|, so M, s2 ⊨ φ.

By induction, we get that M, s1 ⊨ φ iff M, s2 ⊨ φ whenever the free variables
in φ are among x1, . . . , xn and s1(xi) = s2(xi) for i = 1, . . . , n.

Problem 3.3. Complete the proof of Proposition 3.14.

explanation Sentences have no free variables, so any two variable assignments assign the
same things to all the (zero) free variables of any sentence. The proposition
just proved then means that whether or not a sentence is satisfied in a structure
relative to a variable assignment is completely independent of the assignment.
We’ll record this fact. It justifies the definition of satisfaction of a sentence in
a structure (without mentioning a variable assignment) that follows.

Corollary 3.15. fol:syn:ass:

cor:sat-sentence

If φ is a sentence and s a variable assignment, then M, s ⊨ φ
iff M, s′ ⊨ φ for every variable assignment s′.

Proof. Let s′ be any variable assignment. Since φ is a sentence, it has no free
variables, and so every variable assignment s′ trivially assigns the same things
to all free variables of φ as does s. So the condition of Proposition 3.14 is
satisfied, and we have M, s ⊨ φ iff M, s′ ⊨ φ.

Definition 3.16. fol:syn:ass:

defn:satisfaction

If φ is a sentence, we say that a structure M satisfies φ,
M ⊨ φ, iff M, s ⊨ φ for all variable assignments s.

If M ⊨ φ, we also simply say that φ is true in M.

Proposition 3.17. fol:syn:ass:

prop:sentence-sat-true

Let M be a structure, φ be a sentence, and s a variable
assignment. M ⊨ φ iff M, s ⊨ φ.

Proof. Exercise.

38 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 3.4. Prove Proposition 3.17

Proposition 3.18.fol:syn:ass:

prop:sat-quant

Suppose φ(x) only contains x free, and M is a structure.
Then:

1. M ⊨ ∃xφ(x) iff M, s ⊨ φ(x) for at least one variable assignment s.

2. M ⊨ ∀xφ(x) iff M, s ⊨ φ(x) for all variable assignments s.

Proof. Exercise.

Problem 3.5. Prove Proposition 3.18.

Problem 3.6. Suppose L is a language without function symbols. Given a
structure M, c a constant symbol and a ∈ |M|, define M[a/c] to be the structure
that is just like M, except that cM[a/c] = a. Define M ||= φ for sentences φ by:

1. φ ≡ ⊥: not M ||= φ.

2. φ ≡ ⊤: M ||= φ.

3. φ ≡ R(d1, . . . , dn): M ||= φ iff ⟨dM1 , . . . , dMn ⟩ ∈ RM.

4. φ ≡ d1 = d2: M ||= φ iff dM1 = dM2 .

5. φ ≡ ¬ψ: M ||= φ iff not M ||= ψ.

6. φ ≡ (ψ ∧ χ): M ||= φ iff M ||= ψ and M ||= χ.

7. φ ≡ (ψ ∨ χ): M ||= φ iff M ||= ψ or M ||= χ (or both).

8. φ ≡ (ψ→ χ): M ||= φ iff not M ||= ψ or M ||= χ (or both).

9. φ ≡ (ψ↔ χ): M ||= φ iff either both M ||= ψ and M ||= χ, or neither
M ||= ψ nor M ||= χ.

10. φ ≡ ∀xψ: M ||= φ iff for all a ∈ |M|, M[a/c] ||= ψ[c/x], if c does not
occur in ψ.

11. φ ≡ ∃xψ: M ||= φ iff there is an a ∈ |M| such that M[a/c] ||= ψ[c/x],
if c does not occur in ψ.

Let x1, . . . , xn be all free variables in φ, c1, . . . , cn constant symbols not in φ,
a1, . . . , an ∈ |M|, and s(xi) = ai.

Show that M, s ⊨ φ iff M[a1/c1, . . . , an/cn] ||= φ[c1/x1] . . . [cn/xn].
(This problem shows that it is possible to give a semantics for first-order

logic that makes do without variable assignments.)

Problem 3.7. Suppose that f is a function symbol not in φ(x, y). Show that
there is a structure M such that M ⊨ ∀x∃y φ(x, y) iff there is an M′ such that
M′ ⊨ ∀xφ(x, f(x)).

(This problem is a special case of what’s known as Skolem’s Theorem;
∀xφ(x, f(x)) is called a Skolem normal form of ∀x ∃y φ(x, y).)

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 39

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

3.6 Extensionality

fol:syn:ext:
sec

explanation Extensionality, sometimes called relevance, can be expressed informally as fol-
lows: the only factors that bear upon the satisfaction of formula φ in a struc-
ture M relative to a variable assignment s, are the size of the domain and the
assignments made by M and s to the elements of the language that actually
appear in φ.

One immediate consequence of extensionality is that where two structures M
and M′ agree on all the elements of the language appearing in a sentence φ
and have the same domain, M and M′ must also agree on whether or not φ
itself is true.

Proposition 3.19 (Extensionality). fol:syn:ext:

prop:extensionality

Let φ be a formula, and M1 and M2

be structures with |M1| = |M2|, and s a variable assignment on |M1| = |M2|.
If cM1 = cM2 , RM1 = RM2 , and fM1 = fM2 for every constant symbol c,
relation symbol R, and function symbol f occurring in φ, then M1, s ⊨ φ iff
M2, s ⊨ φ.

Proof. First prove (by induction on t) that for every term, ValM1
s (t) = ValM2

s (t).
Then prove the proposition by induction on φ, making use of the claim just
proved for the induction basis (where φ is atomic).

Problem 3.8. Carry out the proof of Proposition 3.19 in detail.

Corollary 3.20 (Extensionality for Sentences). fol:syn:ext:

cor:extensionality-sent

Let φ be a sentence and
M1, M2 as in Proposition 3.19. Then M1 ⊨ φ iff M2 ⊨ φ.

Proof. Follows from Proposition 3.19 by Corollary 3.15.

Moreover, the value of a term, and whether or not a structure satisfies
a formula, only depend on the values of its subterms.

Proposition 3.21. fol:syn:ext:

prop:ext-terms

Let M be a structure, t and t′ terms, and s a variable

assignment. Then ValMs (t[t′/x]) = ValMs[ValMs (t′)/x](t).

Proof. By induction on t.

1. If t is a constant, say, t ≡ c, then t[t′/x] = c, and ValMs (c) = cM =
ValMs[ValMs (t′)/x](c).

2. If t is a variable other than x, say, t ≡ y, then t[t′/x] = y, and ValMs (y) =
ValMs[ValMs (t′)/x](y) since s ∼x s[ValMs (t′)/x].

3. If t ≡ x, then t[t′/x] = t′. But ValMs[ValMs (t′)/x](x) = ValMs (t′) by definition

of s[ValMs (t′)/x].

40 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

4. If t ≡ f(t1, . . . , tn) then we have:

ValMs (t[t′/x]) =

= ValMs (f(t1[t′/x], . . . , tn[t′/x]))

by definition of t[t′/x]

= fM(ValMs (t1[t′/x]), . . . ,ValMs (tn[t′/x]))

by definition of ValMs (f(. . .))

= fM(ValMs[ValMs (t′)/x](t1), . . . ,ValMs[ValMs (t′)/x](tn))

by induction hypothesis

= ValMs[ValMs (t′)/x](t) by definition of ValMs[ValMs (t′)/x](f(. . .))

Proposition 3.22.fol:syn:ext:

prop:ext-formulas

Let M be a structure, φ a formula, t′ a term, and s a

variable assignment. Then M, s ⊨ φ[t′/x] iff M, s[ValMs (t′)/x] ⊨ φ.

Proof. Exercise.

Problem 3.9. Prove Proposition 3.22

explanationThe point of Propositions 3.21 and 3.22 is the following. Suppose we have
a term t or a formula φ and some term t′, and we want to know the value
of t[t′/x] or whether or not φ[t′/x] is satisfied in a structure M relative to
a variable assignment s. Then we can either perform the substitution first and
then consider the value or satisfaction relative to M and s, or we can first
determine the value m = ValMs (t′) of t′ in M relative to s, change the variable
assignment to s[m/x] and then consider the value of t in M and s[m/x], or
whether M, s[m/x] ⊨ φ. Propositions 3.21 and 3.22 guarantee that the answer
will be the same, whichever way we do it.

3.7 Semantic Notions

fol:syn:sem:
sec

explanationGiven the definition of structures for first-order languages, we can define some
basic semantic properties of and relationships between sentences. The simplest
of these is the notion of validity of a sentence. A sentence is valid if it is satisfied
in every structure. Valid sentences are those that are satisfied regardless of how
the non-logical symbols in it are interpreted. Valid sentences are therefore also
called logical truths—they are true, i.e., satisfied, in any structure and hence
their truth depends only on the logical symbols occurring in them and their
syntactic structure, but not on the non-logical symbols or their interpretation.

Definition 3.23 (Validity). A sentence φ is valid, ⊨ φ, iff M ⊨ φ for every
structure M.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 41

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 3.24 (Entailment). A set of sentences Γ entails a sentence φ,
Γ ⊨ φ, iff for every structure M with M ⊨ Γ , M ⊨ φ.

Definition 3.25 (Satisfiability). A set of sentences Γ is satisfiable if M ⊨ Γ
for some structure M. If Γ is not satisfiable it is called unsatisfiable.

Proposition 3.26. A sentence φ is valid iff Γ ⊨ φ for every set of sen-
tences Γ .

Proof. For the forward direction, let φ be valid, and let Γ be a set of sentences.
Let M be a structure so that M ⊨ Γ . Since φ is valid, M ⊨ φ, hence Γ ⊨ φ.

For the contrapositive of the reverse direction, let φ be invalid, so there is
a structure M with M ⊭ φ. When Γ = {⊤}, since ⊤ is valid, M ⊨ Γ . Hence,
there is a structure M so that M ⊨ Γ but M ⊭ φ, hence Γ does not entail φ.

Proposition 3.27. fol:syn:sem:

prop:entails-unsat

Γ ⊨ φ iff Γ ∪ {¬φ} is unsatisfiable.

Proof. For the forward direction, suppose Γ ⊨ φ and suppose to the contrary
that there is a structure M so that M ⊨ Γ ∪ {¬φ}. Since M ⊨ Γ and Γ ⊨ φ,
M ⊨ φ. Also, since M ⊨ Γ ∪ {¬φ}, M ⊨ ¬φ, so we have both M ⊨ φ and
M ⊭ φ, a contradiction. Hence, there can be no such structure M, so Γ ∪{¬φ}
is unsatisfiable.

For the reverse direction, suppose Γ ∪ {¬φ} is unsatisfiable. So for every
structure M, either M ⊭ Γ or M ⊨ φ. Hence, for every structure M with
M ⊨ Γ , M ⊨ φ, so Γ ⊨ φ.

Problem 3.10. 1. Show that Γ ⊨ ⊥ iff Γ is unsatisfiable.

2. Show that Γ ∪ {φ} ⊨ ⊥ iff Γ ⊨ ¬φ.

3. Suppose c does not occur in φ or Γ . Show that Γ ⊨ ∀xφ iff Γ ⊨ φ[c/x].

Proposition 3.28. If Γ ⊆ Γ ′ and Γ ⊨ φ, then Γ ′ ⊨ φ.

Proof. Suppose that Γ ⊆ Γ ′ and Γ ⊨ φ. Let M be a structure such that
M ⊨ Γ ′; then M ⊨ Γ , and since Γ ⊨ φ, we get that M ⊨ φ. Hence, whenever
M ⊨ Γ ′, M ⊨ φ, so Γ ′ ⊨ φ.

Theorem 3.29 (Semantic Deduction Theorem). fol:syn:sem:

thm:sem-deduction

Γ ∪ {φ} ⊨ ψ iff Γ ⊨
φ→ ψ.

Proof. For the forward direction, let Γ ∪ {φ} ⊨ ψ and let M be a structure so
that M ⊨ Γ . If M ⊨ φ, then M ⊨ Γ ∪ {φ}, so since Γ ∪ {φ} entails ψ, we get
M ⊨ ψ. Therefore, M ⊨ φ→ ψ, so Γ ⊨ φ→ ψ.

For the reverse direction, let Γ ⊨ φ → ψ and M be a structure so that
M ⊨ Γ ∪ {φ}. Then M ⊨ Γ , so M ⊨ φ→ ψ, and since M ⊨ φ, M ⊨ ψ. Hence,
whenever M ⊨ Γ ∪ {φ}, M ⊨ ψ, so Γ ∪ {φ} ⊨ ψ.

42 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 3.30.fol:syn:sem:

prop:quant-terms

Let M be a structure, and φ(x) a formula with one free
variable x, and t a closed term. Then:

1. φ(t) ⊨ ∃xφ(x)

2. ∀xφ(x) ⊨ φ(t)

Proof. 1. Suppose M ⊨ φ(t). Let s be a variable assignment with s(x) =
ValM(t). Then M, s ⊨ φ(t) since φ(t) is a sentence. By Proposition 3.22,
M, s ⊨ φ(x). By Proposition 3.18, M ⊨ ∃xφ(x).

2. Suppose M ⊨ ∀xφ(x). Let s be a variable assignment with s(x) =
ValM(t). By Proposition 3.18, M, s ⊨ φ(x). By Proposition 3.22, M, s ⊨
φ(t). By Proposition 3.17, M ⊨ φ(t) since φ(t) is a sentence.

Problem 3.11. Complete the proof of Proposition 3.30.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 43

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 4

Theories and Their Models

4.1 Introduction

fol:mat:int:
sec

explanation The development of the axiomatic method is a significant achievement in the
history of science, and is of special importance in the history of mathematics.
An axiomatic development of a field involves the clarification of many questions:
What is the field about? What are the most fundamental concepts? How are
they related? Can all the concepts of the field be defined in terms of these
fundamental concepts? What laws do, and must, these concepts obey?

The axiomatic method and logic were made for each other. Formal logic
provides the tools for formulating axiomatic theories, for proving theorems
from the axioms of the theory in a precisely specified way, for studying the
properties of all systems satisfying the axioms in a systematic way.

Definition 4.1. A set of sentences Γ is closed iff, whenever Γ ⊨ φ then φ ∈ Γ .
The closure of a set of sentences Γ is {φ : Γ ⊨ φ}.

We say that Γ is axiomatized by a set of sentences ∆ if Γ is the closure
of ∆.

explanation We can think of an axiomatic theory as the set of sentences that is ax-
iomatized by its set of axioms ∆. In other words, when we have a first-order
language which contains non-logical symbols for the primitives of the axiomat-
ically developed science we wish to study, together with a set of sentences
that express the fundamental laws of the science, we can think of the theory
as represented by all the sentences in this language that are entailed by the
axioms. This ranges from simple examples with only a single primitive and
simple axioms, such as the theory of partial orders, to complex theories such
as Newtonian mechanics.

The important logical facts that make this formal approach to the axiomatic
method so important are the following. Suppose Γ is an axiom system for a
theory, i.e., a set of sentences.

1. We can state precisely when an axiom system captures an intended class
of structures. That is, if we are interested in a certain class of struc-

44

tures, we will successfully capture that class by an axiom system Γ iff
the structures are exactly those M such that M ⊨ Γ .

2. We may fail in this respect because there are M such that M ⊨ Γ , but M
is not one of the structures we intend. This may lead us to add axioms
which are not true in M.

3. If we are successful at least in the respect that Γ is true in all the intended
structures, then a sentence φ is true in all intended structures whenever
Γ ⊨ φ. Thus we can use logical tools (such as derivation methods) to
show that sentences are true in all intended structures simply by showing
that they are entailed by the axioms.

4. Sometimes we don’t have intended structures in mind, but instead start
from the axioms themselves: we begin with some primitives that we
want to satisfy certain laws which we codify in an axiom system. One
thing that we would like to verify right away is that the axioms do not
contradict each other: if they do, there can be no concepts that obey
these laws, and we have tried to set up an incoherent theory. We can
verify that this doesn’t happen by finding a model of Γ . And if there
are models of our theory, we can use logical methods to investigate them,
and we can also use logical methods to construct models.

5. The independence of the axioms is likewise an important question. It may
happen that one of the axioms is actually a consequence of the others,
and so is redundant. We can prove that an axiom φ in Γ is redundant by
proving Γ \ {φ} ⊨ φ. We can also prove that an axiom is not redundant
by showing that (Γ \{φ})∪{¬φ} is satisfiable. For instance, this is how it
was shown that the parallel postulate is independent of the other axioms
of geometry.

6. Another important question is that of definability of concepts in a theory:
The choice of the language determines what the models of a theory consist
of. But not every aspect of a theory must be represented separately in its
models. For instance, every ordering ≤ determines a corresponding strict
ordering <—given one, we can define the other. So it is not necessary
that a model of a theory involving such an order must also contain the
corresponding strict ordering. When is it the case, in general, that one
relation can be defined in terms of others? When is it impossible to define
a relation in terms of others (and hence must add it to the primitives of
the language)?

4.2 Expressing Properties of Structures

fol:mat:exs:
sec

explanationIt is often useful and important to express conditions on functions and relations,
or more generally, that the functions and relations in a structure satisfy these
conditions. For instance, we would like to have ways of distinguishing those

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 45

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

structures for a language which “capture” what we want the predicate symbols
to “mean” from those that do not. Of course we’re completely free to specify
which structures we “intend,” e.g., we can specify that the interpretation of
the predicate symbol ≤ must be an ordering, or that we are only interested in
interpretations of L in which the domain consists of sets and ∈ is interpreted
by the “is an element of” relation. But can we do this with sentences of the
language? In other words, which conditions on a structure M can we express
by a sentence (or perhaps a set of sentences) in the language of M? There are
some conditions that we will not be able to express. For instance, there is no
sentence of LA which is only true in a structure M if |M| = N. We cannot
express “the domain contains only natural numbers.” But there are “structural
properties” of structures that we perhaps can express. Which properties of
structures can we express by sentences? Or, to put it another way, which
collections of structures can we describe as those making a sentence (or set of
sentences) true?

Definition 4.2 (Model of a set). Let Γ be a set of sentences in a language L.
We say that a structure M is a model of Γ if M ⊨ φ for all φ ∈ Γ .

Example 4.3. The sentence ∀xx ≤ x is true in M iff ≤M is a reflexive relation.
The sentence ∀x∀y ((x ≤ y ∧ y ≤ x) → x = y) is true in M iff ≤M is anti-
symmetric. The sentence ∀x ∀y ∀z ((x ≤ y ∧ y ≤ z) → x ≤ z) is true in M iff
≤M is transitive. Thus, the models of

{ ∀xx ≤ x,

∀x∀y ((x ≤ y ∧ y ≤ x) → x = y),

∀x∀y ∀z ((x ≤ y ∧ y ≤ z) → x ≤ z) }

are exactly those structures in which ≤M is reflexive, anti-symmetric, and
transitive, i.e., a partial order. Hence, we can take them as axioms for the
first-order theory of partial orders.

4.3 Examples of First-Order Theories

fol:mat:the:
sec

Example 4.4. The theory of strict linear orders in the language L< is axiom-
atized by the set

{ ∀x¬x < x,

∀x∀y ((x < y ∨ y < x) ∨ x = y),

∀x∀y ∀z ((x < y ∧ y < z) → x < z) }

It completely captures the intended structures: every strict linear order is a
model of this axiom system, and vice versa, if R is a linear order on a set X,
then the structure M with |M| = X and <M = R is a model of this theory.

46 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Example 4.5. The theory of groups in the language 1 (constant symbol), ·
(two-place function symbol) is axiomatized by

∀x (x · 1) = x

∀x∀y ∀z (x · (y · z)) = ((x · y) · z)

∀x∃y (x · y) = 1

Example 4.6. The theory of Peano arithmetic is axiomatized by the following
sentences in the language of arithmetic LA.

∀x∀y (x′ = y′ → x = y)

∀x 0 ̸= x′

∀x (x+ 0) = x

∀x∀y (x+ y′) = (x+ y)′

∀x (x× 0) = 0

∀x∀y (x× y′) = ((x× y) + x)

∀x∀y (x < y↔∃z (z′ + x) = y)

plus all sentences of the form

(φ(0) ∧ ∀x (φ(x) → φ(x′))) →∀xφ(x)

Since there are infinitely many sentences of the latter form, this axiom system
is infinite. The latter form is called the induction schema. (Actually, the
induction schema is a bit more complicated than we let on here.)

The last axiom is an explicit definition of <.

Example 4.7. The theory of pure sets plays an important role in the founda-
tions (and in the philosophy) of mathematics. A set is pure if all its elements
are also pure sets. The empty set counts therefore as pure, but a set that has
something as an element that is not a set would not be pure. So the pure sets
are those that are formed just from the empty set and no “urelements,” i.e.,
objects that are not themselves sets.

The following might be considered as an axiom system for a theory of pure
sets:

∃x¬∃y y ∈ x

∀x∀y (∀z(z ∈ x↔ z ∈ y) → x = y)

∀x∀y ∃z ∀u (u ∈ z↔ (u = x ∨ u = y))

∀x∃y ∀z (z ∈ y↔∃u (z ∈ u ∧ u ∈ x))

plus all sentences of the form

∃x∀y (y ∈ x↔ φ(y))

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 47

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

The first axiom says that there is a set with no elements (i.e., ∅ exists); the
second says that sets are extensional; the third that for any sets X and Y , the
set {X,Y } exists; the fourth that for any set X, the set ∪X exists, where ∪X
is the union of all the elements of X.

The sentences mentioned last are collectively called the naive comprehen-
sion scheme. It essentially says that for every φ(x), the set {x : φ(x)} exists—so
at first glance a true, useful, and perhaps even necessary axiom. It is called
“naive” because, as it turns out, it makes this theory unsatisfiable: if you take
φ(y) to be ¬y ∈ y, you get the sentence

∃x∀y (y ∈ x↔¬y ∈ y)

and this sentence is not satisfied in any structure.

Example 4.8. In the area of mereology, the relation of parthood is a funda-
mental relation. Just like theories of sets, there are theories of parthood that
axiomatize various conceptions (sometimes conflicting) of this relation.

The language of mereology contains a single two-place predicate symbol P ,
and P (x, y) “means” that x is a part of y. When we have this interpretation
in mind, a structure for this language is called a parthood structure. Of course,
not every structure for a single two-place predicate will really deserve this
name. To have a chance of capturing “parthood,” PM must satisfy some
conditions, which we can lay down as axioms for a theory of parthood. For
instance, parthood is a partial order on objects: every object is a part (albeit
an improper part) of itself; no two different objects can be parts of each other;
a part of a part of an object is itself part of that object. Note that in this sense
“is a part of” resembles “is a subset of,” but does not resemble “is an element
of” which is neither reflexive nor transitive.

∀xP (x, x)

∀x∀y ((P (x, y) ∧ P (y, x)) → x = y)

∀x∀y ∀z ((P (x, y) ∧ P (y, z)) → P (x, z))

Moreover, any two objects have a mereological sum (an object that has these
two objects as parts, and is minimal in this respect).

∀x∀y ∃z ∀u (P (z, u) ↔ (P (x, u) ∧ P (y, u)))

These are only some of the basic principles of parthood considered by meta-
physicians. Further principles, however, quickly become hard to formulate or
write down without first introducing some defined relations. For instance, most
metaphysicians interested in mereology also view the following as a valid prin-
ciple: whenever an object x has a proper part y, it also has a part z that has
no parts in common with y, and so that the fusion of y and z is x.

48 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

4.4 Expressing Relations in a Structure

fol:mat:exr:
sec

explanationOne main use formulas can be put to is to express properties and relations in
a structure M in terms of the primitives of the language L of M. By this we
mean the following: the domain of M is a set of objects. The constant symbols,
function symbols, and predicate symbols are interpreted in M by some objects
in|M|, functions on |M|, and relations on |M|. For instance, if A20 is in L, then

M assigns to it a relation R = A20
M

. Then the formula A20(v1, v2) expresses
that very relation, in the following sense: if a variable assignment s maps v1 to
a ∈ |M| and v2 to b ∈ |M|, then

Rab iff M, s ⊨ A20(v1, v2).

Note that we have to involve variable assignments here: we can’t just say “Rab
iff M ⊨ A20(a, b)” because a and b are not symbols of our language: they are
elements of |M|.

Since we don’t just have atomic formulas, but can combine them using the
logical connectives and the quantifiers, more complex formulas can define other
relations which aren’t directly built into M. We’re interested in how to do that,
and specifically, which relations we can define in a structure.

Definition 4.9. Let φ(v1, . . . , vn) be a formula of L in which only v1,. . . , vn
occur free, and let M be a structure for L. φ(v1, . . . , vn) expresses the rela-
tion R ⊆ |M|n iff

Ra1 . . . an iff M, s ⊨ φ(v1, . . . , vn)

for any variable assignment s with s(vi) = ai (i = 1, . . . , n).

Example 4.10. In the standard model of arithmetic N, the formula v1 <
v2 ∨ v1 = v2 expresses the ≤ relation on N. The formula v2 = v ′1 expresses
the successor relation, i.e., the relation R ⊆ N2 where Rnm holds if m is the
successor of n. The formula v1 = v ′2 expresses the predecessor relation. The
formulas ∃v3 (v3 ̸= 0 ∧ v2 = (v1 + v3)) and ∃v3 (v1 + v3

′) = v2 both express the
< relation. This means that the predicate symbol < is actually superfluous in
the language of arithmetic; it can be defined.

explanationThis idea is not just interesting in specific structures, but generally when-
ever we use a language to describe an intended model or models, i.e., when we
consider theories. These theories often only contain a few predicate symbols as
basic symbols, but in the domain they are used to describe often many other
relations play an important role. If these other relations can be systematically
expressed by the relations that interpret the basic predicate symbols of the
language, we say we can define them in the language.

Problem 4.1. Find formulas in LA which define the following relations:

1. n is between i and j;

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 49

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. n evenly divides m (i.e., m is a multiple of n);

3. n is a prime number (i.e., no number other than 1 and n evenly divides n).

Problem 4.2. Suppose the formula φ(v1, v2) expresses the relation R ⊆ |M|2
in a structure M. Find formulas that express the following relations:

1. the inverse R−1 of R;

2. the relative product R | R;

Can you find a way to express R+, the transitive closure of R?

Problem 4.3. Let L be the language containing a 2-place predicate symbol
< only (no other constant symbols, function symbols or predicate symbols—
except of course =). Let N be the structure such that |N| = N, and <N =
{⟨n,m⟩ : n < m}. Prove the following:

1. {0} is definable in N;

2. {1} is definable in N;

3. {2} is definable in N;

4. for each n ∈ N, the set {n} is definable in N;

5. every finite subset of |N| is definable in N;

6. every co-finite subset of |N| is definable in N (where X ⊆ N is co-finite
iff N \X is finite).

4.5 The Theory of Sets

fol:mat:set:
sec

Almost all of mathematics can be developed in the theory of sets. Developing
mathematics in this theory involves a number of things. First, it requires a
set of axioms for the relation ∈. A number of different axiom systems have
been developed, sometimes with conflicting properties of ∈. The axiom system
known as ZFC, Zermelo-Fraenkel set theory with the axiom of choice stands
out: it is by far the most widely used and studied, because it turns out that its
axioms suffice to prove almost all the things mathematicians expect to be able
to prove. But before that can be established, it first is necessary to make clear
how we can even express all the things mathematicians would like to express.
For starters, the language contains no constant symbols or function symbols, so
it seems at first glance unclear that we can talk about particular sets (such as
∅ or N), can talk about operations on sets (such as X ∪Y and ℘(X)), let alone
other constructions which involve things other than sets, such as relations and
functions.

To begin with, “is an element of” is not the only relation we are interested
in: “is a subset of” seems almost as important. But we can define “is a subset

50 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

of” in terms of “is an element of.” To do this, we have to find a formula φ(x, y)
in the language of set theory which is satisfied by a pair of sets ⟨X,Y ⟩ iff
X ⊆ Y . But X is a subset of Y just in case all elements of X are also elements
of Y . So we can define ⊆ by the formula

∀z (z ∈ x→ z ∈ y)

Now, whenever we want to use the relation ⊆ in a formula, we could instead
use that formula (with x and y suitably replaced, and the bound variable z
renamed if necessary). For instance, extensionality of sets means that if any
sets x and y are contained in each other, then x and y must be the same set.
This can be expressed by ∀x ∀y ((x ⊆ y ∧ y ⊆ x) → x = y), or, if we replace ⊆
by the above definition, by

∀x∀y ((∀z (z ∈ x→ z ∈ y) ∧ ∀z (z ∈ y→ z ∈ x)) → x = y).

This is in fact one of the axioms of ZFC, the “axiom of extensionality.”
There is no constant symbol for ∅, but we can express “x is empty” by

¬∃y y ∈ x. Then “∅ exists” becomes the sentence ∃x¬∃y y ∈ x. This is
another axiom of ZFC. (Note that the axiom of extensionality implies that
there is only one empty set.) Whenever we want to talk about ∅ in the language
of set theory, we would write this as “there is a set that’s empty and . . . ” As
an example, to express the fact that ∅ is a subset of every set, we could write

∃x (¬∃y y ∈ x ∧ ∀z x ⊆ z)

where, of course, x ⊆ z would in turn have to be replaced by its definition.
To talk about operations on sets, such as X ∪ Y and ℘(X), we have to use

a similar trick. There are no function symbols in the language of set theory,
but we can express the functional relations X ∪ Y = Z and ℘(X) = Y by

∀u ((u ∈ x ∨ u ∈ y) ↔ u ∈ z)

∀u (u ⊆ x↔ u ∈ y)

since the elements of X∪Y are exactly the sets that are either elements of X or
elements of Y , and the elements of ℘(X) are exactly the subsets of X. However,
this doesn’t allow us to use x∪y or ℘(x) as if they were terms: we can only use
the entire formulas that define the relations X∪Y = Z and ℘(X) = Y . In fact,
we do not know that these relations are ever satisfied, i.e., we do not know that
unions and power sets always exist. For instance, the sentence ∀x ∃y ℘(x) = y
is another axiom of ZFC (the power set axiom).

Now what about talk of ordered pairs or functions? Here we have to explain
how we can think of ordered pairs and functions as special kinds of sets. One
way to define the ordered pair ⟨x, y⟩ is as the set {{x}, {x, y}}. But like before,
we cannot introduce a function symbol that names this set; we can only define
the relation ⟨x, y⟩ = z, i.e., {{x}, {x, y}} = z:

∀u (u ∈ z↔ (∀v (v ∈ u↔ v = x) ∨ ∀v (v ∈ u↔ (v = x ∨ v = y))))

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 51

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

This says that the elements u of z are exactly those sets which either have x
as its only element or have x and y as its only elements (in other words, those
sets that are either identical to {x} or identical to {x, y}). Once we have this,
we can say further things, e.g., that X × Y = Z:

∀z (z ∈ Z ↔∃x ∃y (x ∈ X ∧ y ∈ Y ∧ ⟨x, y⟩ = z))

A function f : X → Y can be thought of as the relation f(x) = y, i.e., as
the set of pairs {⟨x, y⟩ : f(x) = y}. We can then say that a set f is a function
from X to Y if (a) it is a relation ⊆ X × Y , (b) it is total, i.e., for all x ∈ X
there is some y ∈ Y such that ⟨x, y⟩ ∈ f and (c) it is functional, i.e., whenever
⟨x, y⟩, ⟨x, y′⟩ ∈ f , y = y′ (because values of functions must be unique). So “f
is a function from X to Y ” can be written as:

∀u (u ∈ f →∃x ∃y (x ∈ X ∧ y ∈ Y ∧ ⟨x, y⟩ = u)) ∧
∀x (x ∈ X → (∃y (y ∈ Y ∧ maps(f, x, y)) ∧

(∀y ∀y′ ((maps(f, x, y) ∧ maps(f, x, y′)) → y = y′)))

where maps(f, x, y) abbreviates ∃v (v ∈ f ∧ ⟨x, y⟩ = v) (this formula expresses
“f(x) = y”).

It is now also not hard to express that f : X → Y is injective, for instance:

f : X → Y ∧ ∀x∀x′ ((x ∈ X ∧ x′ ∈ X ∧
∃y (maps(f, x, y) ∧ maps(f, x′, y))) → x = x′)

A function f : X → Y is injective iff, whenever f maps x, x′ ∈ X to a single y,
x = x′. If we abbreviate this formula as inj(f,X, Y), we’re already in a position
to state in the language of set theory something as non-trivial as Cantor’s
theorem: there is no injective function from ℘(X) to X:

∀X ∀Y (℘(X) = Y →¬∃f inj(f, Y,X))

One might think that set theory requires another axiom that guarantees
the existence of a set for every defining property. If φ(x) is a formula of set
theory with the variable x free, we can consider the sentence

∃y ∀x (x ∈ y↔ φ(x)).

This sentence states that there is a set y whose elements are all and only those
x that satisfy φ(x). This schema is called the “comprehension principle.” It
looks very useful; unfortunately it is inconsistent. Take φ(x) ≡ ¬x ∈ x, then
the comprehension principle states

∃y ∀x (x ∈ y↔ x /∈ x),

i.e., it states the existence of a set of all sets that are not elements of themselves.
No such set can exist—this is Russell’s Paradox. ZFC, in fact, contains a
restricted—and consistent—version of this principle, the separation principle:

∀z ∃y ∀x (x ∈ y↔ (x ∈ z ∧ φ(x)).

52 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 4.4. Show that the comprehension principle is inconsistent by giving
a derivation that shows

∃y ∀x (x ∈ y↔ x /∈ x) ⊢ ⊥.

It may help to first show (A→¬A) ∧ (¬A→A) ⊢ ⊥.

4.6 Expressing the Size of Structures

fol:mat:siz:
sec

explanationThere are some properties of structures we can express even without using the
non-logical symbols of a language. For instance, there are sentences which are
true in a structure iff the domain of the structure has at least, at most, or
exactly a certain number n of elements.

Proposition 4.11. The sentence

φ≥n ≡ ∃x1 ∃x2 . . . ∃xn
(x1 ̸= x2 ∧ x1 ̸= x3 ∧ x1 ̸= x4 ∧ · · · ∧ x1 ̸= xn ∧

x2 ̸= x3 ∧ x2 ̸= x4 ∧ · · · ∧ x2 ̸= xn ∧
...

xn−1 ̸= xn)

is true in a structure M iff |M| contains at least n elements. Consequently,
M ⊨ ¬φ≥n+1 iff |M| contains at most n elements.

Proposition 4.12. The sentence

φ=n ≡ ∃x1 ∃x2 . . . ∃xn
(x1 ̸= x2 ∧ x1 ̸= x3 ∧ x1 ̸= x4 ∧ · · · ∧ x1 ̸= xn ∧

x2 ̸= x3 ∧ x2 ̸= x4 ∧ · · · ∧ x2 ̸= xn ∧
...

xn−1 ̸= xn ∧
∀y (y = x1 ∨ · · · ∨ y = xn))

is true in a structure M iff |M| contains exactly n elements.

Proposition 4.13. A structure is infinite iff it is a model of

{φ≥1, φ≥2, φ≥3, . . . }.

There is no single purely logical sentence which is true in M iff |M| is
infinite. However, one can give sentences with non-logical predicate symbols
which only have infinite models (although not every infinite structure is a model
of them). The property of being a finite structure, and the property of being
a non-enumerable structure cannot even be expressed with an infinite set of
sentences. These facts follow from the compactness and Löwenheim-Skolem
theorems.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 53

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 5

Derivation Systems

This chapter collects general material on derivation systems. A text-
book using a specific system can insert the introduction section plus the
relevant survey section at the beginning of the chapter introducing that
system.

5.1 Introduction

fol:prf:int:
sec

Logics commonly have both a semantics and a derivation system. The seman-
tics concerns concepts such as truth, satisfiability, validity, and entailment.
The purpose of derivation systems is to provide a purely syntactic method of
establishing entailment and validity. They are purely syntactic in the sense
that a derivation in such a system is a finite syntactic object, usually a se-
quence (or other finite arrangement) of sentences or formulas. Good derivation
systems have the property that any given sequence or arrangement of sentences
or formulas can be verified mechanically to be “correct.”

The simplest (and historically first) derivation systems for first-order logic
were axiomatic. A sequence of formulas counts as a derivation in such a sys-
tem if each individual formula in it is either among a fixed set of “axioms”
or follows from formulas coming before it in the sequence by one of a fixed
number of “inference rules”—and it can be mechanically verified if a formula
is an axiom and whether it follows correctly from other formulas by one of the
inference rules. Axiomatic derivation systems are easy to describe—and also
easy to handle meta-theoretically—but derivations in them are hard to read
and understand, and are also hard to produce.

Other derivation systems have been developed with the aim of making it
easier to construct derivations or easier to understand derivations once they
are complete. Examples are natural deduction, truth trees, also known as
tableaux proofs, and the sequent calculus. Some derivation systems are de-
signed especially with mechanization in mind, e.g., the resolution method is
easy to implement in software (but its derivations are essentially impossible to

54

understand). Most of these other derivation systems represent derivations as
trees of formulas rather than sequences. This makes it easier to see which parts
of a derivation depend on which other parts.

So for a given logic, such as first-order logic, the different derivation systems
will give different explications of what it is for a sentence to be a theorem and
what it means for a sentence to be derivable from some others. However that is
done (via axiomatic derivations, natural deductions, sequent derivations, truth
trees, resolution refutations), we want these relations to match the semantic
notions of validity and entailment. Let’s write ⊢ φ for “φ is a theorem” and
“Γ ⊢ φ” for “φ is derivable from Γ .” However ⊢ is defined, we want it to match
up with ⊨, that is:

1. ⊢ φ if and only if ⊨ φ

2. Γ ⊢ φ if and only if Γ ⊨ φ

The “only if” direction of the above is called soundness. A derivation system is
sound if derivability guarantees entailment (or validity). Every decent deriva-
tion system has to be sound; unsound derivation systems are not useful at all.
After all, the entire purpose of a derivation is to provide a syntactic guarantee
of validity or entailment. We’ll prove soundness for the derivation systems we
present.

The converse “if” direction is also important: it is called completeness.
A complete derivation system is strong enough to show that φ is a theorem
whenever φ is valid, and that Γ ⊢ φ whenever Γ ⊨ φ. Completeness is harder
to establish, and some logics have no complete derivation systems. First-order
logic does. Kurt Gödel was the first one to prove completeness for a derivation
system of first-order logic in his 1929 dissertation.

Another concept that is connected to derivation systems is that of consis-
tency. A set of sentences is called inconsistent if anything whatsoever can be
derived from it, and consistent otherwise. Inconsistency is the syntactic coun-
terpart to unsatisfiablity: like unsatisfiable sets, inconsistent sets of sentences
do not make good theories, they are defective in a fundamental way. Consis-
tent sets of sentences may not be true or useful, but at least they pass that
minimal threshold of logical usefulness. For different derivation systems the
specific definition of consistency of sets of sentences might differ, but like ⊢, we
want consistency to coincide with its semantic counterpart, satisfiability. We
want it to always be the case that Γ is consistent if and only if it is satisfi-
able. Here, the “if” direction amounts to completeness (consistency guarantees
satisfiability), and the “only if” direction amounts to soundness (satisfiability
guarantees consistency). In fact, for classical first-order logic, the two versions
of soundness and completeness are equivalent.

5.2 The Sequent Calculus

fol:prf:seq:
sec

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 55

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

While many derivation systems operate with arrangements of sentences, the
sequent calculus operates with sequents. A sequent is an expression of the
form

φ1, . . . , φm ⇒ ψ1, . . . , ψm,

that is a pair of sequences of sentences, separated by the sequent symbol ⇒.
Either sequence may be empty. A derivation in the sequent calculus is a tree
of sequents, where the topmost sequents are of a special form (they are called
“initial sequents” or “axioms”) and every other sequent follows from the se-
quents immediately above it by one of the rules of inference. The rules of
inference either manipulate the sentences in the sequents (adding, removing,
or rearranging them on either the left or the right), or they introduce a com-
plex formula in the conclusion of the rule. For instance, the ∧L rule allows the
inference from φ, Γ ⇒ ∆ to φ ∧ ψ, Γ ⇒ ∆, and the →R allows the inference
from φ, Γ ⇒ ∆,ψ to Γ ⇒ ∆,φ→ψ, for any Γ , ∆, φ, and ψ. (In particular, Γ
and ∆ may be empty.)

The ⊢ relation based on the sequent calculus is defined as follows: Γ ⊢ φ
iff there is some sequence Γ0 such that every φ in Γ0 is in Γ and there is a
derivation with the sequent Γ0 ⇒ φ at its root. φ is a theorem in the sequent
calculus if the sequent ⇒ φ has a derivation. For instance, here is a derivation
that shows that ⊢ (φ ∧ ψ) → φ:

φ ⇒ φ
∧L

φ ∧ ψ ⇒ φ
→R⇒ (φ ∧ ψ) → φ

A set Γ is inconsistent in the sequent calculus if there is a derivation of
Γ0 ⇒ (where every φ ∈ Γ0 is in Γ and the right side of the sequent is empty).
Using the rule WR, any sentence can be derived from an inconsistent set.

The sequent calculus was invented in the 1930s by Gerhard Gentzen. Be-
cause of its systematic and symmetric design, it is a very useful formalism for
developing a theory of derivations. It is relatively easy to find derivations in
the sequent calculus, but these derivations are often hard to read and their
connection to proofs are sometimes not easy to see. It has proved to be a very
elegant approach to derivation systems, however, and many logics have sequent
calculus systems.

5.3 Natural Deduction

fol:prf:ntd:
sec

Natural deduction is a derivation system intended to mirror actual reasoning
(especially the kind of regimented reasoning employed by mathematicians).
Actual reasoning proceeds by a number of “natural” patterns. For instance,
proof by cases allows us to establish a conclusion on the basis of a disjunctive
premise, by establishing that the conclusion follows from either of the disjuncts.
Indirect proof allows us to establish a conclusion by showing that its negation
leads to a contradiction. Conditional proof establishes a conditional claim “if
. . . then . . . ” by showing that the consequent follows from the antecedent.

56 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Natural deduction is a formalization of some of these natural inferences. Each
of the logical connectives and quantifiers comes with two rules, an introduction
and an elimination rule, and they each correspond to one such natural inference
pattern. For instance, →Intro corresponds to conditional proof, and ∨Elim to
proof by cases. A particularly simple rule is ∧Elim which allows the inference
from φ ∧ ψ to φ (or ψ).

One feature that distinguishes natural deduction from other derivation sys-
tems is its use of assumptions. A derivation in natural deduction is a tree
of formulas. A single formula stands at the root of the tree of formulas, and
the “leaves” of the tree are formulas from which the conclusion is derived. In
natural deduction, some leaf formulas play a role inside the derivation but are
“used up” by the time the derivation reaches the conclusion. This corresponds
to the practice, in actual reasoning, of introducing hypotheses which only re-
main in effect for a short while. For instance, in a proof by cases, we assume
the truth of each of the disjuncts; in conditional proof, we assume the truth
of the antecedent; in indirect proof, we assume the truth of the negation of
the conclusion. This way of introducing hypothetical assumptions and then
doing away with them in the service of establishing an intermediate step is a
hallmark of natural deduction. The formulas at the leaves of a natural de-
duction derivation are called assumptions, and some of the rules of inference
may “discharge” them. For instance, if we have a derivation of ψ from some
assumptions which include φ, then the →Intro rule allows us to infer φ→ψ and
discharge any assumption of the form φ. (To keep track of which assumptions
are discharged at which inferences, we label the inference and the assumptions
it discharges with a number.) The assumptions that remain undischarged at
the end of the derivation are together sufficient for the truth of the conclu-
sion, and so a derivation establishes that its undischarged assumptions entail
its conclusion.

The relation Γ ⊢ φ based on natural deduction holds iff there is a derivation
in which φ is the last sentence in the tree, and every leaf which is undischarged
is in Γ . φ is a theorem in natural deduction iff there is a derivation in which
φ is the last sentence and all assumptions are discharged. For instance, here is
a derivation that shows that ⊢ (φ ∧ ψ) → φ:

[φ ∧ ψ]1
∧Elimφ

1 →Intro
(φ ∧ ψ) → φ

The label 1 indicates that the assumption φ ∧ ψ is discharged at the →Intro
inference.

A set Γ is inconsistent iff Γ ⊢ ⊥ in natural deduction. The rule ⊥I makes
it so that from an inconsistent set, any sentence can be derived.

Natural deduction systems were developed by Gerhard Gentzen and Sta-
nis law Jaśkowski in the 1930s, and later developed by Dag Prawitz and Frederic
Fitch. Because its inferences mirror natural methods of proof, it is favored by
philosophers. The versions developed by Fitch are often used in introductory

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 57

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

logic textbooks. In the philosophy of logic, the rules of natural deduction have
sometimes been taken to give the meanings of the logical operators (“proof-
theoretic semantics”).

5.4 Tableaux

fol:prf:tab:
sec

While many derivation systems operate with arrangements of sentences, tableaux
operate with signed formulas. A signed formula is a pair consisting of a truth
value sign (T or F) and a sentence

Tφ or Fφ.

A tableau consists of signed formulas arranged in a downward-branching tree.
It begins with a number of assumptions and continues with signed formulas
which result from one of the signed formulas above it by applying one of the
rules of inference. Each rule allows us to add one or more signed formulas to
the end of a branch, or two signed formulas side by side—in this case a branch
splits into two, with the two added signed formulas forming the ends of the
two branches.

A rule applied to a complex signed formula results in the addition of signed
formulas which are immediate sub-formulas. They come in pairs, one rule for
each of the two signs. For instance, the ∧T rule applies to Tφ ∧ ψ, and allows
the addition of both the two signed formulas Tφ and Tψ to the end of any
branch containing Tφ ∧ ψ, and the rule φ ∧ ψF allows a branch to be split by
adding Fφ and Fψ side-by-side. A tableau is closed if every one of its branches
contains a matching pair of signed formulas Tφ and Fφ.

The ⊢ relation based on tableaux is defined as follows: Γ ⊢ φ iff there is
some finite set Γ0 = {ψ1, . . . , ψn} ⊆ Γ such that there is a closed tableau for
the assumptions

{Fφ,Tψ1, . . . ,Tψn}

For instance, here is a closed tableau that shows that ⊢ (φ ∧ ψ) → φ:

1.
2.
3.
4.
5.

F (φ ∧ ψ) → φ
Tφ ∧ ψ
Fφ
Tφ
Tψ
⊗

Assumption
→F 1
→F 1
→T 2
→T 2

A set Γ is inconsistent in the tableau calculus if there is a closed tableau
for assumptions

{Tψ1, . . . ,Tψn}

for some ψi ∈ Γ .
Tableaux were invented in the 1950s independently by Evert Beth and

Jaakko Hintikka, and simplified and popularized by Raymond Smullyan. They

58 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

are very easy to use, since constructing a tableau is a very systematic proce-
dure. Because of the systematic nature of tableaux, they also lend themselves
to implementation by computer. However, a tableau is often hard to read and
their connection to proofs are sometimes not easy to see. The approach is also
quite general, and many different logics have tableau systems. Tableaux also
help us to find structures that satisfy given (sets of) sentences: if the set is
satisfiable, it won’t have a closed tableau, i.e., any tableau will have an open
branch. The satisfying structure can be “read off” an open branch, provided
every rule it is possible to apply has been applied on that branch. There is also
a very close connection to the sequent calculus: essentially, a closed tableau is
a condensed derivation in the sequent calculus, written upside-down.

5.5 Axiomatic Derivations

fol:prf:axd:
sec

Axiomatic derivations are the oldest and simplest logical derivation systems. Its
derivations are simply sequences of sentences. A sequence of sentences counts
as a correct derivation if every sentence φ in it satisfies one of the following
conditions:

1. φ is an axiom, or

2. φ is an element of a given set Γ of sentences, or

3. φ is justified by a rule of inference.

To be an axiom, φ has to have the form of one of a number of fixed sentence
schemas. There are many sets of axiom schemas that provide a satisfactory
(sound and complete) derivation system for first-order logic. Some are orga-
nized according to the connectives they govern, e.g., the schemas

φ→ (ψ→ φ) ψ→ (ψ ∨ χ) (ψ ∧ χ) → ψ

are common axioms that govern →, ∨ and ∧. Some axiom systems aim at a
minimal number of axioms. Depending on the connectives that are taken as
primitives, it is even possible to find axiom systems that consist of a single
axiom.

A rule of inference is a conditional statement that gives a sufficient condition
for a sentence in a derivation to be justified. Modus ponens is one very common
such rule: it says that if φ and φ→ ψ are already justified, then ψ is justified.
This means that a line in a derivation containing the sentence ψ is justified,
provided that both φ and φ→ψ (for some sentence φ) appear in the derivation
before ψ.

The ⊢ relation based on axiomatic derivations is defined as follows: Γ ⊢ φ
iff there is a derivation with the sentence φ as its last formula (and Γ is taken
as the set of sentences in that derivation which are justified by (2) above). φ
is a theorem if φ has a derivation where Γ is empty, i.e., every sentence in the
derivation is justified either by (1) or (3). For instance, here is a derivation
that shows that ⊢ φ→ (ψ→ (ψ ∨ φ)):

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 59

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. ψ→ (ψ ∨ φ)
2. (ψ→ (ψ ∨ φ)) → (φ→ (ψ→ (ψ ∨ φ)))
3. φ→ (ψ→ (ψ ∨ φ))

The sentence on line 1 is of the form of the axiom φ → (φ ∨ ψ) (with the
roles of φ and ψ reversed). The sentence on line 2 is of the form of the axiom
φ→(ψ→φ). Thus, both lines are justified. Line 3 is justified by modus ponens:
if we abbreviate it as θ, then line 2 has the form χ→ θ, where χ is ψ→ (ψ∨φ),
i.e., line 1.

A set Γ is inconsistent if Γ ⊢ ⊥. A complete axiom system will also prove
that ⊥→ φ for any φ, and so if Γ is inconsistent, then Γ ⊢ φ for any φ.

Systems of axiomatic derivations for logic were first given by Gottlob Frege
in his 1879 Begriffsschrift, which for this reason is often considered the first
work of modern logic. They were perfected in Alfred North Whitehead and
Bertrand Russell’s Principia Mathematica and by David Hilbert and his stu-
dents in the 1920s. They are thus often called “Frege systems” or “Hilbert
systems.” They are very versatile in that it is often easy to find an axiomatic
system for a logic. Because derivations have a very simple structure and only
one or two inference rules, it is also relatively easy to prove things about them.
However, they are very hard to use in practice, i.e., it is difficult to find and
write proofs.

60 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 6

The Sequent Calculus

This chapter presents Gentzen’s standard sequent calculus LK for clas-
sical first-order logic. It could use more examples and exercises. To include
or exclude material relevant to the sequent calculus as a proof system, use
the “prfLK” tag.

6.1 Rules and Derivations

fol:seq:rul:
sec

For the following, let Γ,∆,Π,Λ represent finite sequences of sentences.

Definition 6.1 (Sequent). A sequent is an expression of the form

Γ ⇒ ∆

where Γ and ∆ are finite (possibly empty) sequences of sentences of the lan-
guage L. Γ is called the antecedent, while ∆ is the succedent.

explanationThe intuitive idea behind a sequent is: if all of the sentences in the an-
tecedent hold, then at least one of the sentences in the succedent holds. That
is, if Γ = ⟨φ1, . . . , φm⟩ and ∆ = ⟨ψ1, . . . , ψn⟩, then Γ ⇒ ∆ holds iff

(φ1 ∧ · · · ∧ φm) → (ψ1 ∨ · · · ∨ ψn)

holds. There are two special cases: where Γ is empty and when ∆ is empty.
When Γ is empty, i.e., m = 0, ⇒ ∆ holds iff ψ1 ∨ · · · ∨ ψn holds. When ∆
is empty, i.e., n = 0, Γ ⇒ holds iff ¬(φ1 ∧ · · · ∧ φm) does. We say a sequent
is valid iff the corresponding sentence is valid.

If Γ is a sequence of sentences, we write Γ, φ for the result of appending φ
to the right end of Γ (and φ, Γ for the result of appending φ to the left end
of Γ). If ∆ is a sequence of sentences also, then Γ,∆ is the concatenation of
the two sequences.

61

Definition 6.2 (Initial Sequent). An initial sequent is a sequent of one of
the following forms:

1. φ⇒ φ

2. ⇒ ⊤

3. ⊥ ⇒

for any sentence φ in the language.

Derivations in the sequent calculus are certain trees of sequents, where the
topmost sequents are initial sequents, and if a sequent stands below one or two
other sequents, it must follow correctly by a rule of inference. The rules for LK
are divided into two main types: logical rules and structural rules. The logical
rules are named for the main operator of the sentence containing φ and/or ψ in
the lower sequent. Each one comes in two versions, one for inferring a sequent
with the sentence containing the logical operator on the left, and one with the
sentence on the right.

6.2 Propositional Rules

fol:seq:prl:
sec

Rules for ¬

Γ ⇒ ∆,φ
¬L¬φ, Γ ⇒ ∆

φ,Γ ⇒ ∆
¬R

Γ ⇒ ∆,¬φ

Rules for ∧

φ, Γ ⇒ ∆
∧L

φ ∧ ψ, Γ ⇒ ∆

ψ,Γ ⇒ ∆
∧L

φ ∧ ψ, Γ ⇒ ∆

Γ ⇒ ∆,φ Γ ⇒ ∆,ψ
∧R

Γ ⇒ ∆,φ ∧ ψ

Rules for ∨

φ, Γ ⇒ ∆ ψ,Γ ⇒ ∆
∨L

φ ∨ ψ, Γ ⇒ ∆

Γ ⇒ ∆,φ
∨R

Γ ⇒ ∆,φ ∨ ψ
Γ ⇒ ∆,ψ

∨R
Γ ⇒ ∆,φ ∨ ψ

62 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Rules for →

Γ ⇒ ∆,φ ψ,Π ⇒ Λ
→L

φ→ ψ, Γ,Π ⇒ ∆,Λ

φ, Γ ⇒ ∆,ψ
→R

Γ ⇒ ∆,φ→ ψ

6.3 Quantifier Rules

fol:seq:qrl:
sec

Rules for ∀

φ(t), Γ ⇒ ∆
∀L∀xφ(x), Γ ⇒ ∆

Γ ⇒ ∆,φ(a)
∀R

Γ ⇒ ∆,∀xφ(x)

In ∀L, t is a closed term (i.e., one without variables). In ∀R, a is a constant
symbol which must not occur anywhere in the lower sequent of the ∀R rule.
We call a the eigenvariable of the ∀R inference.1

Rules for ∃

φ(a), Γ ⇒ ∆
∃L∃xφ(x), Γ ⇒ ∆

Γ ⇒ ∆,φ(t)
∃R

Γ ⇒ ∆,∃xφ(x)

Again, t is a closed term, and a is a constant symbol which does not occur
in the lower sequent of the ∃L rule. We call a the eigenvariable of the ∃L
inference.

The condition that an eigenvariable not occur in the lower sequent of the
∀R or ∃L inference is called the eigenvariable condition.

explanationRecall the convention that when φ is a formula with the variable x free, we
indicate this by writing φ(x). In the same context, φ(t) then is short for φ[t/x].
So we could also write the ∃R rule as:

Γ ⇒ ∆,φ[t/x]
∃R

Γ ⇒ ∆, ∃xφ

Note that t may already occur in φ, e.g., φ might be P (t, x). Thus, inferring
Γ ⇒ ∆,∃xP (t, x) from Γ ⇒ ∆,P (t, t) is a correct application of ∃R—you
may “replace” one or more, and not necessarily all, occurrences of t in the
premise by the bound variable x. However, the eigenvariable conditions in ∀R

1We use the term “eigenvariable” even though a in the above rule is a constant symbol.
This has historical reasons.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 63

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

and ∃L require that the constant symbol a does not occur in φ. So, you cannot
correctly infer Γ ⇒ ∆, ∀xP (a, x) from Γ ⇒ ∆,P (a, a) using ∀R.

explanation In ∃R and ∀L there are no restrictions on the term t. On the other hand,
in the ∃L and ∀R rules, the eigenvariable condition requires that the constant
symbol a does not occur anywhere outside of φ(a) in the upper sequent. It is
necessary to ensure that the system is sound, i.e., only derives sequents that
are valid. Without this condition, the following would be allowed:

φ(a) ⇒ φ(a)
*∃L∃xφ(x) ⇒ φ(a)

∀R∃xφ(x) ⇒ ∀xφ(x)

φ(a) ⇒ φ(a)
*∀R

φ(a) ⇒ ∀xφ(x)
∃L∃xφ(x) ⇒ ∀xφ(x)

However, ∃xφ(x) ⇒ ∀xφ(x) is not valid.

6.4 Structural Rules

fol:seq:srl:
sec

We also need a few rules that allow us to rearrange sentences in the left and
right side of a sequent. Since the logical rules require that the sentences in
the premise which the rule acts upon stand either to the far left or to the far
right, we need an “exchange” rule that allows us to move sentences to the right
position. It’s also important sometimes to be able to combine two identical
sentences into one, and to add a sentence on either side.

Weakening

Γ ⇒ ∆
WL

φ, Γ ⇒ ∆
Γ ⇒ ∆

WR
Γ ⇒ ∆,φ

Contraction

φ,φ, Γ ⇒ ∆
CL

φ, Γ ⇒ ∆

Γ ⇒ ∆,φ, φ
CR

Γ ⇒ ∆,φ

Exchange

Γ, φ, ψ,Π ⇒ ∆
XL

Γ, ψ, φ,Π ⇒ ∆

Γ ⇒ ∆,φ, ψ, Λ
XR

Γ ⇒ ∆,ψ, φ, Λ

A series of weakening, contraction, and exchange inferences will often be indi-
cated by double inference lines.

64 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

The following rule, called “cut,” is not strictly speaking necessary, but
makes it a lot easier to reuse and combine derivations.

Γ ⇒ ∆,φ φ,Π ⇒ Λ
Cut

Γ,Π ⇒ ∆,Λ

6.5 Derivations

fol:seq:der:
sec

explanationWe’ve said what an initial sequent looks like, and we’ve given the rules of
inference. Derivations in the sequent calculus are inductively generated from
these: each derivation either is an initial sequent on its own, or consists of one
or two derivations followed by an inference.

Definition 6.3 (LK derivation). An LK-derivation of a sequent S is a finite
tree of sequents satisfying the following conditions:

1. The topmost sequents of the tree are initial sequents.

2. The bottommost sequent of the tree is S.

3. Every sequent in the tree except S is a premise of a correct application
of an inference rule whose conclusion stands directly below that sequent
in the tree.

We then say that S is the end-sequent of the derivation and that S is derivable
in LK (or LK-derivable).

Example 6.4. Every initial sequent, e.g., χ ⇒ χ is a derivation. We can
obtain a new derivation from this by applying, say, the WL rule,

Γ ⇒ ∆
WL

φ, Γ ⇒ ∆

The rule, however, is meant to be general: we can replace the φ in the rule
with any sentence, e.g., also with θ. If the premise matches our initial sequent
χ ⇒ χ, that means that both Γ and ∆ are just χ, and the conclusion would
then be θ, χ⇒ χ. So, the following is a derivation:

χ ⇒ χ
WL

θ, χ ⇒ χ

We can now apply another rule, say XL, which allows us to switch two sentences
on the left. So, the following is also a correct derivation:

χ ⇒ χ
WL

θ, χ ⇒ χ
XL

χ, θ ⇒ χ

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 65

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

In this application of the rule, which was given as

Γ, φ, ψ,Π ⇒ ∆
XL

Γ, ψ, φ,Π ⇒ ∆,

both Γ and Π were empty, ∆ is χ, and the roles of φ and ψ are played by θ
and χ, respectively. In much the same way, we also see that

θ ⇒ θ
WL

χ, θ ⇒ θ

is a derivation. Now we can take these two derivations, and combine them
using ∧R. That rule was

Γ ⇒ ∆,φ Γ ⇒ ∆,ψ
∧R

Γ ⇒ ∆,φ ∧ ψ

In our case, the premises must match the last sequents of the derivations ending
in the premises. That means that Γ is χ, θ, ∆ is empty, φ is χ and ψ is θ. So
the conclusion, if the inference should be correct, is χ, θ ⇒ χ ∧ θ.

χ ⇒ χ
WL

θ, χ ⇒ χ
XL

χ, θ ⇒ χ
θ ⇒ θ

WL
χ, θ ⇒ θ

∧R
χ, θ ⇒ χ ∧ θ

Of course, we can also reverse the premises, then φ would be θ and ψ would
be χ.

θ ⇒ θ
WL

χ, θ ⇒ θ

χ ⇒ χ
WL

θ, χ ⇒ χ
XL

χ, θ ⇒ χ
∧R

χ, θ ⇒ θ ∧ χ

6.6 Examples of Derivations

fol:seq:pro:
sec

Example 6.5. Give an LK-derivation for the sequent φ ∧ ψ ⇒ φ.
We begin by writing the desired end-sequent at the bottom of the derivation.

φ ∧ ψ ⇒ φ

Next, we need to figure out what kind of inference could have a lower sequent
of this form. This could be a structural rule, but it is a good idea to start by
looking for a logical rule. The only logical connective occurring in the lower
sequent is ∧, so we’re looking for an ∧ rule, and since the ∧ symbol occurs in
the antecedent, we’re looking at the ∧L rule.

∧L
φ ∧ ψ ⇒ φ

66 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

There are two options for what could have been the upper sequent of the ∧L
inference: we could have an upper sequent of φ ⇒ φ, or of ψ ⇒ φ. Clearly,
φ ⇒ φ is an initial sequent (which is a good thing), while ψ ⇒ φ is not
derivable in general. We fill in the upper sequent:

φ ⇒ φ
∧L

φ ∧ ψ ⇒ φ

We now have a correct LK-derivation of the sequent φ ∧ ψ ⇒ φ.

Example 6.6. Give an LK-derivation for the sequent ¬φ ∨ ψ ⇒ φ→ ψ.
Begin by writing the desired end-sequent at the bottom of the derivation.

¬φ ∨ ψ ⇒ φ→ ψ

To find a logical rule that could give us this end-sequent, we look at the logical
connectives in the end-sequent: ¬, ∨, and →. We only care at the moment
about ∨ and → because they are main operators of sentences in the end-sequent,
while ¬ is inside the scope of another connective, so we will take care of it later.
Our options for logical rules for the final inference are therefore the ∨L rule
and the →R rule. We could pick either rule, really, but let’s pick the →R rule
(if for no reason other than it allows us to put off splitting into two branches).
According to the form of →R inferences which can yield the lower sequent, this
must look like:

φ,¬φ ∨ ψ ⇒ ψ
→R¬φ ∨ ψ ⇒ φ→ ψ

If we move ¬φ ∨ ψ to the outside of the antecedent, we can apply the ∨L
rule. According to the schema, this must split into two upper sequents as
follows:

¬φ,φ ⇒ ψ ψ,φ ⇒ ψ
∨L¬φ ∨ ψ,φ ⇒ ψ

XR
φ,¬φ ∨ ψ ⇒ ψ

→R¬φ ∨ ψ ⇒ φ→ ψ

Remember that we are trying to wind our way up to initial sequents; we seem
to be pretty close! The right branch is just one weakening and one exchange
away from an initial sequent and then it is done:

¬φ,φ ⇒ ψ

ψ ⇒ ψ
WL

φ,ψ ⇒ ψ
XL

ψ,φ ⇒ ψ
∨L¬φ ∨ ψ,φ ⇒ ψ

XR
φ,¬φ ∨ ψ ⇒ ψ

→R¬φ ∨ ψ ⇒ φ→ ψ

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 67

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Now looking at the left branch, the only logical connective in any sentence
is the ¬ symbol in the antecedent sentences, so we’re looking at an instance of
the ¬L rule.

φ ⇒ ψ,φ
¬L¬φ,φ ⇒ ψ

ψ ⇒ ψ
WL

φ,ψ ⇒ ψ
XL

ψ,φ ⇒ ψ
∨L¬φ ∨ ψ,φ ⇒ ψ

XR
φ,¬φ ∨ ψ ⇒ ψ

→R¬φ ∨ ψ ⇒ φ→ ψ

Similarly to how we finished off the right branch, we are just one weakening
and one exchange away from finishing off this left branch as well.

φ ⇒ φ
WR

φ ⇒ φ,ψ
XR

φ ⇒ ψ,φ
¬L¬φ,φ ⇒ ψ

ψ ⇒ ψ
WL

φ,ψ ⇒ ψ
XL

ψ,φ ⇒ ψ
∨L¬φ ∨ ψ,φ ⇒ ψ

XR
φ,¬φ ∨ ψ ⇒ ψ

→R¬φ ∨ ψ ⇒ φ→ ψ

Example 6.7. Give an LK-derivation of the sequent ¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)
Using the techniques from above, we start by writing the desired end-

sequent at the bottom.

¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

The available main connectives of sentences in the end-sequent are the ∨ symbol
and the ¬ symbol. It would work to apply either the ∨L or the ¬R rule here,
but we start with the ¬R rule because it avoids splitting up into two branches
for a moment:

φ ∧ ψ,¬φ ∨ ¬ψ ⇒
¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

Now we have a choice of whether to look at the ∧L or the ∨L rule. Let’s see
what happens when we apply the ∧L rule: we have a choice to start with either
the sequent φ,¬φ∨ψ ⇒ or the sequent ψ,¬φ∨ψ ⇒ . Since the derivation
is symmetric with regards to φ and ψ, let’s go with the former:

φ,¬φ ∨ ¬ψ ⇒
∧L

φ ∧ ψ,¬φ ∨ ¬ψ ⇒
¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

Continuing to fill in the derivation, we see that we run into a problem:

68 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

φ ⇒ φ
¬L¬φ,φ ⇒

?
φ ⇒ ψ

¬L¬ψ,φ ⇒
∨L¬φ ∨ ¬ψ,φ ⇒

XL
φ,¬φ ∨ ¬ψ ⇒

∧L
φ ∧ ψ,¬φ ∨ ¬ψ ⇒

¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

The top of the right branch cannot be reduced any further, and it cannot be
brought by way of structural inferences to an initial sequent, so this is not the
right path to take. So clearly, it was a mistake to apply the ∧L rule above.
Going back to what we had before and carrying out the ∨L rule instead, we
get

¬φ,φ ∧ ψ ⇒ ¬ψ,φ ∧ ψ ⇒
∨L¬φ ∨ ¬ψ,φ ∧ ψ ⇒

XL
φ ∧ ψ,¬φ ∨ ¬ψ ⇒

¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

Completing each branch as we’ve done before, we get

φ ⇒ φ
∧L

φ ∧ ψ ⇒ φ
¬L¬φ,φ ∧ ψ ⇒

ψ ⇒ ψ
∧L

φ ∧ ψ ⇒ ψ
¬L¬ψ,φ ∧ ψ ⇒

∨L¬φ ∨ ¬ψ,φ ∧ ψ ⇒
XL

φ ∧ ψ,¬φ ∨ ¬ψ ⇒
¬R¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

(We could have carried out the ∧ rules lower than the ¬ rules in these steps
and still obtained a correct derivation).

Example 6.8. So far we haven’t used the contraction rule, but it is sometimes
required. Here’s an example where that happens. Suppose we want to prove
⇒ φ∨¬φ. Applying ∨R backwards would give us one of these two derivations:

⇒ φ
∨R⇒ φ ∨ ¬φ

φ ⇒
¬R⇒ ¬φ

∨R⇒ φ ∨ ¬φ

Neither of these of course ends in an initial sequent. The trick is to realize
that the contraction rule allows us to combine two copies of a sentence into
one—and when we’re searching for a proof, i.e., going from bottom to top, we
can keep a copy of φ ∨ ¬φ in the premise, e.g.,

⇒ φ ∨ ¬φ,φ
∨R⇒ φ ∨ ¬φ,φ ∨ ¬φ
CR⇒ φ ∨ ¬φ

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 69

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Now we can apply ∨R a second time, and also get ¬φ, which leads to a complete
derivation.

φ ⇒ φ
¬R⇒ φ,¬φ

∨R⇒ φ,φ ∨ ¬φ
XR⇒ φ ∨ ¬φ,φ

∨R⇒ φ ∨ ¬φ,φ ∨ ¬φ
CR⇒ φ ∨ ¬φ

Problem 6.1. Give derivations of the following sequents:

1. φ ∧ (ψ ∧ χ) ⇒ (φ ∧ ψ) ∧ χ.

2. φ ∨ (ψ ∨ χ) ⇒ (φ ∨ ψ) ∨ χ.

3. φ→ (ψ→ χ) ⇒ ψ→ (φ→ χ).

4. φ⇒ ¬¬φ.

Problem 6.2. Give derivations of the following sequents:

1. (φ ∨ ψ) → χ⇒ φ→ χ.

2. (φ→ χ) ∧ (ψ→ χ) ⇒ (φ ∨ ψ) → χ.

3. ⇒ ¬(φ ∧ ¬φ).

4. ψ→ φ⇒ ¬φ→¬ψ.

5. ⇒ (φ→¬φ) →¬φ.

6. ⇒ ¬(φ→ ψ) →¬ψ.

7. φ→ χ⇒ ¬(φ ∧ ¬χ).

8. φ ∧ ¬χ⇒ ¬(φ→ χ).

9. φ ∨ ψ,¬ψ ⇒ φ.

10. ¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ).

11. ⇒ (¬φ ∧ ¬ψ) →¬(φ ∨ ψ).

12. ⇒ ¬(φ ∨ ψ) → (¬φ ∧ ¬ψ).

Problem 6.3. Give derivations of the following sequents:

1. ¬(φ→ ψ) ⇒ φ.

2. ¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ.

3. φ→ ψ ⇒ ¬φ ∨ ψ.

70 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

4. ⇒ ¬¬φ→ φ.

5. φ→ ψ,¬φ→ ψ ⇒ ψ.

6. (φ ∧ ψ) → χ⇒ (φ→ χ) ∨ (ψ→ χ).

7. (φ→ ψ) → φ⇒ φ.

8. ⇒ (φ→ ψ) ∨ (ψ→ χ).

(These all require the CR rule.)

6.7 Derivations with Quantifiers

fol:seq:prq:
sec

Example 6.9. Give an LK-derivation of the sequent ∃x¬φ(x) ⇒ ¬∀xφ(x).
When dealing with quantifiers, we have to make sure not to violate the

eigenvariable condition, and sometimes this requires us to play around with
the order of carrying out certain inferences. In general, it helps to try and
take care of rules subject to the eigenvariable condition first (they will be lower
down in the finished proof). Also, it is a good idea to try and look ahead and
try to guess what the initial sequent might look like. In our case, it will have to
be something like φ(a) ⇒ φ(a). That means that when we are “reversing” the
quantifier rules, we will have to pick the same term—what we will call a—for
both the ∀ and the ∃ rule. If we picked different terms for each rule, we would
end up with something like φ(a) ⇒ φ(b), which, of course, is not derivable.

Starting as usual, we write

∃x¬φ(x) ⇒ ¬∀xφ(x)

We could either carry out the ∃L rule or the ¬R rule. Since the ∃L rule is
subject to the eigenvariable condition, it’s a good idea to take care of it sooner
rather than later, so we’ll do that one first.

¬φ(a) ⇒ ¬∀xφ(x)
∃L∃x¬φ(x) ⇒ ¬∀xφ(x)

Applying the ¬L and ¬R rules backwards, we get

∀xφ(x) ⇒ φ(a)
¬L¬φ(a),∀xφ(x) ⇒

XL∀xφ(x),¬φ(a) ⇒
¬R¬φ(a) ⇒ ¬∀xφ(x)
∃L∃x¬φ(x) ⇒ ¬∀xφ(x)

At this point, our only option is to carry out the ∀L rule. Since this rule is not
subject to the eigenvariable restriction, we’re in the clear. Remember, we want
to try and obtain an initial sequent (of the form φ(a) ⇒ φ(a)), so we should
choose a as our argument for φ when we apply the rule.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 71

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

φ(a) ⇒ φ(a)
∀L∀xφ(x) ⇒ φ(a)
¬L¬φ(a),∀xφ(x) ⇒

XL∀xφ(x),¬φ(a) ⇒
¬R¬φ(a) ⇒ ¬∀xφ(x)
∃L∃x¬φ(x) ⇒ ¬∀xφ(x)

It is important, especially when dealing with quantifiers, to double check at
this point that the eigenvariable condition has not been violated. Since the
only rule we applied that is subject to the eigenvariable condition was ∃L, and
the eigenvariable a does not occur in its lower sequent (the end-sequent), this
is a correct derivation.

Problem 6.4. Give derivations of the following sequents:

1. ⇒ (∀xφ(x) ∧ ∀y ψ(y)) →∀z (φ(z) ∧ ψ(z)).

2. ⇒ (∃xφ(x) ∨ ∃y ψ(y)) →∃z (φ(z) ∨ ψ(z)).

3. ∀x (φ(x) → ψ) ⇒ ∃y φ(y) → ψ.

4. ∀x¬φ(x) ⇒ ¬∃xφ(x).

5. ⇒ ¬∃xφ(x) →∀x¬φ(x).

6. ⇒ ¬∃x ∀y ((φ(x, y) →¬φ(y, y)) ∧ (¬φ(y, y) → φ(x, y))).

Problem 6.5. Give derivations of the following sequents:

1. ⇒ ¬∀xφ(x) →∃x¬φ(x).

2. (∀xφ(x) → ψ) ⇒ ∃y (φ(y) → ψ).

3. ⇒ ∃x (φ(x) →∀y φ(y)).

(These all require the CR rule.)

This section collects the definitions of the provability relation and con-
sistency for natural deduction.

6.8 Proof-Theoretic Notions

fol:seq:ptn:
sec

explanation Just as we’ve defined a number of important semantic notions (validity, en-
tailment, satisfiabilty), we now define corresponding proof-theoretic notions.
These are not defined by appeal to satisfaction of sentences in structures, but
by appeal to the derivability or non-derivability of certain sequents. It was an
important discovery that these notions coincide. That they do is the content
of the soundness and completeness theorem.

72 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 6.10 (Theorems). A sentence φ is a theorem if there is a deriva-
tion in LK of the sequent ⇒ φ. We write ⊢ φ if φ is a theorem and ⊬ φ if
it is not.

Definition 6.11 (Derivability). A sentence φ is derivable from a set of sen-
tences Γ , Γ ⊢ φ, iff there is a finite subset Γ0 ⊆ Γ and a sequence Γ ′

0 of the
sentences in Γ0 such that LK derives Γ ′

0 ⇒ φ. If φ is not derivable from Γ we
write Γ ⊬ φ.

Because of the contraction, weakening, and exchange rules, the order and
number of sentences in Γ ′

0 does not matter: if a sequent Γ ′
0 ⇒ φ is derivable,

then so is Γ ′′
0 ⇒ φ for any Γ ′′

0 that contains the same sentences as Γ ′
0. For

instance, if Γ0 = {ψ, χ} then both Γ ′
0 = ⟨ψ,ψ, χ⟩ and Γ ′′

0 = ⟨χ, χ, ψ⟩ are
sequences containing just the sentences in Γ0. If a sequent containing one is
derivable, so is the other, e.g.:

ψ,ψ, χ ⇒ φ
CL

ψ, χ ⇒ φ
XL

χ, ψ ⇒ φ
WL

χ, χ, ψ ⇒ φ

From now on we’ll say that if Γ0 is a finite set of sentences then Γ0 ⇒ φ is
any sequent where the antecedent is a sequence of sentences in Γ0 and tacitly
include contractions, exchanges, and weakenings if necessary.

Definition 6.12 (Consistency). A set of sentences Γ is inconsistent iff there
is a finite subset Γ0 ⊆ Γ such that LK derives Γ0 ⇒ . If Γ is not inconsistent,
i.e., if for every finite Γ0 ⊆ Γ , LK does not derive Γ0 ⇒ , we say it is
consistent.

Proposition 6.13 (Reflexivity).fol:seq:ptn:

prop:reflexivity

If φ ∈ Γ , then Γ ⊢ φ.

Proof. The initial sequent φ⇒ φ is derivable, and {φ} ⊆ Γ .

Proposition 6.14 (Monotonicity).fol:seq:ptn:

prop:monotonicity

If Γ ⊆ ∆ and Γ ⊢ φ, then ∆ ⊢ φ.

Proof. Suppose Γ ⊢ φ, i.e., there is a finite Γ0 ⊆ Γ such that Γ0 ⇒ φ is
derivable. Since Γ ⊆ ∆, then Γ0 is also a finite subset of ∆. The derivation of
Γ0 ⇒ φ thus also shows ∆ ⊢ φ.

Proposition 6.15 (Transitivity).fol:seq:ptn:

prop:transitivity

If Γ ⊢ φ and {φ}∪∆ ⊢ ψ, then Γ ∪∆ ⊢
ψ.

Proof. If Γ ⊢ φ, there is a finite Γ0 ⊆ Γ and a derivation π0 of Γ0 ⇒ φ. If
{φ} ∪∆ ⊢ ψ, then for some finite subset ∆0 ⊆ ∆, there is a derivation π1 of
φ,∆0 ⇒ ψ. Consider the following derivation:

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 73

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

π0

Γ0 ⇒ φ

π1

φ,∆0 ⇒ ψ
Cut

Γ0, ∆0 ⇒ ψ

Since Γ0 ∪∆0 ⊆ Γ ∪∆, this shows Γ ∪∆ ⊢ ψ.

Note that this means that in particular if Γ ⊢ φ and φ ⊢ ψ, then Γ ⊢ ψ. It
follows also that if φ1, . . . , φn ⊢ ψ and Γ ⊢ φi for each i, then Γ ⊢ ψ.

Proposition 6.16. fol:seq:ptn:

prop:incons

Γ is inconsistent iff Γ ⊢ φ for every sentence φ.

Proof. Exercise.

Problem 6.6. Prove Proposition 6.16

Proposition 6.17 (Compactness). fol:seq:ptn:

prop:proves-compact

1. If Γ ⊢ φ then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊢ φ.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ⊢ φ, then there is a finite subset Γ0 ⊆ Γ such that the sequent
Γ0 ⇒ φ has a derivation. Consequently, Γ0 ⊢ φ.

2. If Γ is inconsistent, there is a finite subset Γ0 ⊆ Γ such that LK derives
Γ0 ⇒ . But then Γ0 is a finite subset of Γ that is inconsistent.

6.9 Derivability and Consistency

fol:seq:prv:
sec

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 6.18. fol:seq:prv:

prop:provability-contr

If Γ ⊢ φ and Γ ∪ {φ} is inconsistent, then Γ is inconsis-
tent.

Proof. There are finite Γ0 and Γ1 ⊆ Γ such that LK derives Γ0 ⇒ φ and
φ, Γ1 ⇒ . Let the LK-derivation of Γ0 ⇒ φ be π0 and the LK-derivation of
Γ1, φ⇒ be π1. We can then derive

π0

Γ0 ⇒ φ

π1

φ, Γ1 ⇒
Cut

Γ0, Γ1 ⇒

Since Γ0 ⊆ Γ and Γ1 ⊆ Γ , Γ0 ∪ Γ1 ⊆ Γ , hence Γ is inconsistent.

74 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 6.19.fol:seq:prv:

prop:prov-incons

Γ ⊢ φ iff Γ ∪ {¬φ} is inconsistent.

Proof. First suppose Γ ⊢ φ, i.e., there is a derivation π0 of Γ ⇒ φ. By adding
a ¬L rule, we obtain a derivation of ¬φ, Γ ⇒ , i.e., Γ ∪ {¬φ} is inconsistent.

If Γ ∪ {¬φ} is inconsistent, there is a derivation π1 of ¬φ, Γ ⇒ . The
following is a derivation of Γ ⇒ φ:

φ ⇒ φ
¬R⇒ φ,¬φ

π1

¬φ, Γ ⇒
Cut

Γ ⇒ φ

Problem 6.7. Prove that Γ ⊢ ¬φ iff Γ ∪ {φ} is inconsistent.

Proposition 6.20.fol:seq:prv:

prop:explicit-inc

If Γ ⊢ φ and ¬φ ∈ Γ , then Γ is inconsistent.

Proof. Suppose Γ ⊢ φ and ¬φ ∈ Γ . Then there is a derivation π of a sequent
Γ0 ⇒ φ. The sequent ¬φ, Γ0 ⇒ is also derivable:

π

Γ0 ⇒ φ

φ ⇒ φ
¬L¬φ,φ ⇒

XLφ,¬φ ⇒
Cut

Γ,¬φ ⇒

Since ¬φ ∈ Γ and Γ0 ⊆ Γ , this shows that Γ is inconsistent.

Proposition 6.21.fol:seq:prv:

prop:provability-exhaustive

If Γ ∪{φ} and Γ ∪{¬φ} are both inconsistent, then Γ is
inconsistent.

Proof. There are finite sets Γ0 ⊆ Γ and Γ1 ⊆ Γ and LK-derivations π0 and π1
of φ, Γ0 ⇒ and ¬φ, Γ1 ⇒ , respectively. We can then derive

π0

φ, Γ0 ⇒
¬R

Γ0 ⇒ ¬φ

π1

¬φ, Γ1 ⇒
Cut

Γ0, Γ1 ⇒

Since Γ0 ⊆ Γ and Γ1 ⊆ Γ , Γ0 ∪ Γ1 ⊆ Γ . Hence Γ is inconsistent.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 75

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6.10 Derivability and the Propositional Connectives

fol:seq:ppr:
sec

explanation We establish that the derivability relation ⊢ of the sequent calculus is strong
enough to establish some basic facts involving the propositional connectives,
such as that φ ∧ ψ ⊢ φ and φ,φ→ ψ ⊢ ψ (modus ponens). These facts are
needed for the proof of the completeness theorem.

Proposition 6.22. fol:seq:ppr:

prop:provability-land

1. fol:seq:ppr:

prop:provability-land-left

Both φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ.

2. fol:seq:ppr:

prop:provability-land-right

φ,ψ ⊢ φ ∧ ψ.

Proof. 1. Both sequents φ ∧ ψ ⇒ φ and φ ∧ ψ ⇒ ψ are derivable:

φ ⇒ φ
∧L

φ ∧ ψ ⇒ φ

ψ ⇒ ψ
∧L

φ ∧ ψ ⇒ ψ

2. Here is a derivation of the sequent φ,ψ ⇒ φ ∧ ψ:

φ ⇒ φ ψ ⇒ ψ
∧R

φ,ψ ⇒ φ ∧ ψ

Proposition 6.23. fol:seq:ppr:

prop:provability-lor

1. φ ∨ ψ,¬φ,¬ψ is inconsistent.

2. Both φ ⊢ φ ∨ ψ and ψ ⊢ φ ∨ ψ.

Proof. 1. We give a derivation of the sequent φ ∨ ψ,¬φ,¬ψ ⇒:

φ ⇒ φ
¬L¬φ,φ ⇒

φ,¬φ,¬ψ ⇒

ψ ⇒ ψ
¬L¬ψ,ψ ⇒

ψ,¬φ,¬ψ ⇒
∨L

φ ∨ ψ,¬φ,¬ψ ⇒

(Recall that double inference lines indicate several weakening, contrac-
tion, and exchange inferences.)

2. Both sequents φ⇒ φ ∨ ψ and ψ ⇒ φ ∨ ψ have derivations:

φ ⇒ φ
∨R

φ ⇒ φ ∨ ψ
ψ ⇒ ψ

∨R
ψ ⇒ φ ∨ ψ

Proposition 6.24. fol:seq:ppr:

prop:provability-lif

1. fol:seq:ppr:

prop:provability-lif-left

φ,φ→ ψ ⊢ ψ.

76 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2.fol:seq:ppr:

prop:provability-lif-right

Both ¬φ ⊢ φ→ ψ and ψ ⊢ φ→ ψ.

Proof. 1. The sequent φ→ ψ,φ⇒ ψ is derivable:

φ ⇒ φ ψ ⇒ ψ
→L

φ→ ψ,φ ⇒ ψ

2. Both sequents ¬φ⇒ φ→ ψ and ψ ⇒ φ→ ψ are derivable:

φ ⇒ φ
¬L¬φ,φ ⇒

XLφ,¬φ ⇒
WR

φ,¬φ ⇒ ψ
→R¬φ ⇒ φ→ ψ

ψ ⇒ ψ
WL

φ,ψ ⇒ ψ
→R

ψ ⇒ φ→ ψ

6.11 Derivability and the Quantifiers

fol:seq:qpr:
sec

explanationThe completeness theorem also requires that the sequent calculus rules rules
yield the facts about ⊢ established in this section.

Theorem 6.25.fol:seq:qpr:

thm:strong-generalization

If c is a constant not occurring in Γ or φ(x) and Γ ⊢ φ(c),
then Γ ⊢ ∀xφ(x).

Proof. Let π0 be an LK-derivation of Γ0 ⇒ φ(c) for some finite Γ0 ⊆ Γ . By
adding a ∀R inference, we obtain a derivation of Γ0 ⇒ ∀xφ(x), since c does
not occur in Γ or φ(x) and thus the eigenvariable condition is satisfied.

Proposition 6.26.fol:seq:qpr:

prop:provability-quantifiers

1. φ(t) ⊢ ∃xφ(x).

2. ∀xφ(x) ⊢ φ(t).

Proof. 1. The sequent φ(t) ⇒ ∃xφ(x) is derivable:

φ(t) ⇒ φ(t)
∃R

φ(t) ⇒ ∃xφ(x)

2. The sequent ∀xφ(x) ⇒ φ(t) is derivable:

φ(t) ⇒ φ(t)
∀L∀xφ(x) ⇒ φ(t)

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 77

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6.12 Soundness

fol:seq:sou:
sec

explanation A derivation system, such as the sequent calculus, is sound if it cannot derive
things that do not actually hold. Soundness is thus a kind of guaranteed safety
property for derivation systems. Depending on which proof theoretic property
is in question, we would like to know for instance, that

1. every derivable φ is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do
not hold, the derivation system is deficient—it would derive too much. Con-
sequently, establishing the soundness of a derivation system is of the utmost
importance.

Because all these proof-theoretic properties are defined via derivability in
the sequent calculus of certain sequents, proving (1)–(3) above requires proving
something about the semantic properties of derivable sequents. We will first
define what it means for a sequent to be valid, and then show that every
derivable sequent is valid. (1)–(3) then follow as corollaries from this result.

Definition 6.27. A structure M satisfies a sequent Γ ⇒ ∆ iff either M ⊭ φ
for some φ ∈ Γ or M ⊨ φ for some φ ∈ ∆.

A sequent is valid iff every structure M satisfies it.

Theorem 6.28 (Soundness). fol:seq:sou:

thm:sequent-soundness

If LK derives Θ ⇒ Ξ, then Θ ⇒ Ξ is valid.

Proof. Let π be a derivation of Θ ⇒ Ξ. We proceed by induction on the
number of inferences n in π.

If the number of inferences is 0, then π consists only of an initial sequent.
Every initial sequent φ⇒ φ is obviously valid, since for every M, either M ⊭ φ
or M ⊨ φ.

If the number of inferences is greater than 0, we distinguish cases according
to the type of the lowermost inference. By induction hypothesis, we can assume
that the premises of that inference are valid, since the number of inferences in
the derivation of any premise is smaller than n.

First, we consider the possible inferences with only one premise.

1. The last inference is a weakening. Then Θ ⇒ Ξ is either φ, Γ ⇒ ∆ (if
the last inference is WL) or Γ ⇒ ∆,φ (if it’s WR), and the derivation
ends in one of

Γ ⇒ ∆
WL

φ, Γ ⇒ ∆
Γ ⇒ ∆

WR
Γ ⇒ ∆,φ

78 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

By induction hypothesis, Γ ⇒ ∆ is valid, i.e., for every structure M,
either there is some χ ∈ Γ such that M ⊭ χ or there is some χ ∈ ∆ such
that M ⊨ χ.

If M ⊭ χ for some χ ∈ Γ , then χ ∈ Θ as well since Θ = φ, Γ , and so
M ⊭ χ for some χ ∈ Θ. Similarly, if M ⊨ χ for some χ ∈ ∆, as χ ∈ Ξ,
M ⊨ χ for some χ ∈ Ξ. Consequently, Θ ⇒ Ξ is valid.

2. The last inference is ¬L: Then the premise of the last inference is Γ ⇒
∆,φ and the conclusion is ¬φ, Γ ⇒ ∆, i.e., the derivation ends in

Γ ⇒ ∆,φ
¬L¬φ, Γ ⇒ ∆

and Θ = ¬φ, Γ while Ξ = ∆.

The induction hypothesis tells us that Γ ⇒ ∆,φ is valid, i.e., for every
M, either (a) for some χ ∈ Γ , M ⊭ χ, or (b) for some χ ∈ ∆, M ⊨ χ,
or (c) M ⊨ φ. We want to show that Θ ⇒ Ξ is also valid. Let M be
a structure. If (a) holds, then there is χ ∈ Γ so that M ⊭ χ, but χ ∈ Θ
as well. If (b) holds, there is χ ∈ ∆ such that M ⊨ χ, but χ ∈ Ξ as well.
Finally, if M ⊨ φ, then M ⊭ ¬φ. Since ¬φ ∈ Θ, there is χ ∈ Θ such that
M ⊭ χ. Consequently, Θ ⇒ Ξ is valid.

3. The last inference is ¬R: Exercise.

4. The last inference is ∧L: There are two variants: φ ∧ ψ may be inferred
on the left from φ or from ψ on the left side of the premise. In the first
case, the π ends in

φ, Γ ⇒ ∆
∧L

φ ∧ ψ, Γ ⇒ ∆

and Θ = φ ∧ ψ, Γ while Ξ = ∆. Consider a structure M. Since by
induction hypothesis, φ, Γ ⇒ ∆ is valid, (a) M ⊭ φ, (b) M ⊭ χ for some
χ ∈ Γ , or (c) M ⊨ χ for some χ ∈ ∆. In case (a), M ⊭ φ ∧ ψ, so there
is χ ∈ Θ (namely, φ ∧ ψ) such that M ⊭ χ. In case (b), there is χ ∈ Γ
such that M ⊭ χ, and χ ∈ Θ as well. In case (c), there is χ ∈ ∆ such
that M ⊨ χ, and χ ∈ Ξ as well since Ξ = ∆. So in each case, M satisfies
φ ∧ ψ, Γ ⇒ ∆. Since M was arbitrary, Γ ⇒ ∆ is valid. The case where
φ ∧ ψ is inferred from ψ is handled the same, changing φ to ψ.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 79

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

5. The last inference is ∨R: There are two variants: φ ∨ ψ may be inferred
on the right from φ or from ψ on the right side of the premise. In the
first case, π ends in

Γ ⇒ ∆,φ
∨R

Γ ⇒ ∆,φ ∨ ψ

Now Θ = Γ and Ξ = ∆,φ∨ψ. Consider a structure M. Since Γ ⇒ ∆,φ
is valid, (a) M ⊨ φ, (b) M ⊭ χ for some χ ∈ Γ , or (c) M ⊨ χ for some
χ ∈ ∆. In case (a), M ⊨ φ ∨ ψ. In case (b), there is χ ∈ Γ such that
M ⊭ χ. In case (c), there is χ ∈ ∆ such that M ⊨ χ. So in each case,
M satisfies Γ ⇒ ∆,φ ∨ ψ, i.e., Θ ⇒ Ξ. Since M was arbitrary, Θ ⇒ Ξ
is valid. The case where φ ∨ ψ is inferred from ψ is handled the same,
changing φ to ψ.

6. The last inference is →R: Then π ends in

φ, Γ ⇒ ∆,ψ
→R

Γ ⇒ ∆,φ→ ψ

Again, the induction hypothesis says that the premise is valid; we want
to show that the conclusion is valid as well. Let M be arbitrary. Since
φ, Γ ⇒ ∆,ψ is valid, at least one of the following cases obtains: (a)
M ⊭ φ, (b) M ⊨ ψ, (c) M ⊭ χ for some χ ∈ Γ , or (d) M ⊨ χ for some
χ ∈ ∆. In cases (a) and (b), M ⊨ φ→ ψ and so there is a χ ∈ ∆,φ→ ψ
such that M ⊨ χ. In case (c), for some χ ∈ Γ , M ⊭ χ. In case (d), for
some χ ∈ ∆, M ⊨ χ. In each case, M satisfies Γ ⇒ ∆,φ→ ψ. Since M
was arbitrary, Γ ⇒ ∆,φ→ ψ is valid.

7. The last inference is ∀L: Then there is a formula φ(x) and a closed term t
such that π ends in

φ(t), Γ ⇒ ∆
∀L∀xφ(x), Γ ⇒ ∆

We want to show that the conclusion ∀xφ(x), Γ ⇒ ∆ is valid. Consider
a structure M. Since the premise φ(t), Γ ⇒ ∆ is valid, (a) M ⊭ φ(t),
(b) M ⊭ χ for some χ ∈ Γ , or (c) M ⊨ χ for some χ ∈ ∆. In case (a),
by Proposition 3.30, if M ⊨ ∀xφ(x), then M ⊨ φ(t). Since M ⊭ φ(t),

80 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

M ⊭ ∀xφ(x) . In case (b) and (c), M also satisfies ∀xφ(x), Γ ⇒ ∆.
Since M was arbitrary, ∀xφ(x), Γ ⇒ ∆ is valid.

8. The last inference is ∃R: Exercise.

9. The last inference is ∀R: Then there is a formula φ(x) and a constant
symbol a such that π ends in

Γ ⇒ ∆,φ(a)
∀R

Γ ⇒ ∆, ∀xφ(x)

where the eigenvariable condition is satisfied, i.e., a does not occur in
φ(x), Γ , or ∆. By induction hypothesis, the premise of the last inference
is valid. We have to show that the conclusion is valid as well, i.e., that
for any structure M, (a) M ⊨ ∀xφ(x), (b) M ⊭ χ for some χ ∈ Γ , or
(c) M ⊨ χ for some χ ∈ ∆.

Suppose M is an arbitrary structure. If (b) or (c) holds, we are done, so
suppose neither holds: for all χ ∈ Γ , M ⊨ χ, and for all χ ∈ ∆, M ⊭ χ.
We have to show that (a) holds, i.e., M ⊨ ∀xφ(x). By Proposition 3.18,
if suffices to show that M, s ⊨ φ(x) for all variable assignments s. So let s
be an arbitrary variable assignment. Consider the structure M′ which is
just like M except aM

′
= s(x). By Corollary 3.20, for any χ ∈ Γ , M′ ⊨ χ

since a does not occur in Γ , and for any χ ∈ ∆, M′ ⊭ χ. But the premise
is valid, so M′ ⊨ φ(a). By Proposition 3.17, M′, s ⊨ φ(a), since φ(a) is

a sentence. Now s ∼x s with s(x) = ValM
′

s (a), since we’ve defined M′

in just this way. So Proposition 3.22 applies, and we get M′, s ⊨ φ(x).
Since a does not occur in φ(x), by Proposition 3.19, M, s ⊨ φ(x). Since s
was arbitrary, we’ve completed the proof that M, s ⊨ φ(x) for all variable
assignments.

10. The last inference is ∃L: Exercise.

Now let’s consider the possible inferences with two premises.

1. The last inference is a cut: then π ends in

Γ ⇒ ∆,φ φ,Π ⇒ Λ
Cut

Γ,Π ⇒ ∆,Λ

Let M be a structure. By induction hypothesis, the premises are valid,
so M satisfies both premises. We distinguish two cases: (a) M ⊭ φ and
(b) M ⊨ φ. In case (a), in order for M to satisfy the left premise, it must

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 81

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

satisfy Γ ⇒ ∆. But then it also satisfies the conclusion. In case (b), in
order for M to satisfy the right premise, it must satisfy Π \Λ. Again, M
satisfies the conclusion.

2. The last inference is ∧R. Then π ends in

Γ ⇒ ∆,φ Γ ⇒ ∆,ψ
∧R

Γ ⇒ ∆,φ ∧ ψ

Consider a structure M. If M satisfies Γ ⇒ ∆, we are done. So suppose
it doesn’t. Since Γ ⇒ ∆,φ is valid by induction hypothesis, M ⊨ φ.
Similarly, since Γ ⇒ ∆,ψ is valid, M ⊨ ψ. But then M ⊨ φ ∧ ψ.

3. The last inference is ∨L: Exercise.

4. The last inference is →L. Then π ends in

Γ ⇒ ∆,φ ψ,Π ⇒ Λ
→L

φ→ ψ, Γ,Π ⇒ ∆,Λ

Again, consider a structure M and suppose M doesn’t satisfy Γ,Π ⇒
∆,Λ. We have to show that M ⊭ φ→ψ. If M doesn’t satisfy Γ,Π ⇒ ∆,Λ,
it satisfies neither Γ ⇒ ∆ nor Π ⇒ Λ. Since, Γ ⇒ ∆,φ is valid, we have
M ⊨ φ. Since ψ,Π ⇒ Λ is valid, we have M ⊭ ψ. But then M ⊭ φ→ ψ,
which is what we wanted to show.

Problem 6.8. Complete the proof of Theorem 6.28.

Corollary 6.29. fol:seq:sou:

cor:weak-soundness

If ⊢ φ then φ is valid.

Corollary 6.30. fol:seq:sou:

cor:entailment-soundness

If Γ ⊢ φ then Γ ⊨ φ.

Proof. If Γ ⊢ φ then for some finite subset Γ0 ⊆ Γ , there is a derivation of
Γ0 ⇒ φ. By Theorem 6.28, every structure M either makes some ψ ∈ Γ0 false
or makes φ true. Hence, if M ⊨ Γ then also M ⊨ φ.

Corollary 6.31. fol:seq:sou:

cor:consistency-soundness

If Γ is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then
there is a finite Γ0 ⊆ Γ and a derivation of Γ0 ⇒ . By Theorem 6.28, Γ0 ⇒
is valid. In other words, for every structure M, there is χ ∈ Γ0 so that M ⊭ χ,
and since Γ0 ⊆ Γ , that χ is also in Γ . Thus, no M satisfies Γ , and Γ is not
satisfiable.

82 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

6.13 Derivations with Identity predicate

fol:seq:ide:
sec

Derivations with identity predicate require additional initial sequents and in-
ference rules.

Definition 6.32 (Initial sequents for =). If t is a closed term, then ⇒ t =
t is an initial sequent.

The rules for = are (t1 and t2 are closed terms):

t1 = t2, Γ ⇒ ∆,φ(t1)
=

t1 = t2, Γ ⇒ ∆,φ(t2)

t1 = t2, Γ ⇒ ∆,φ(t2)
=

t1 = t2, Γ ⇒ ∆,φ(t1)

Example 6.33. If s and t are closed terms, then s = t, φ(s) ⊢ φ(t):

φ(s) ⇒ φ(s)
WL

s = t, φ(s) ⇒ φ(s)
=

s = t, φ(s) ⇒ φ(t)

This may be familiar as the principle of substitutability of identicals, or Leibniz’
Law.

LK proves that = is symmetric and transitive:

⇒ t1 = t1
WLt1 = t2 ⇒ t1 = t1 =

t1 = t2 ⇒ t2 = t1

t1 = t2 ⇒ t1 = t2
WLt2 = t3, t1 = t2 ⇒ t1 = t2 =

t2 = t3, t1 = t2 ⇒ t1 = t3
XLt1 = t2, t2 = t3 ⇒ t1 = t3

In the derivation on the left, the formula x = t1 is our φ(x). On the right, we
take φ(x) to be t1 = x.

Problem 6.9. Give derivations of the following sequents:

1. ⇒ ∀x ∀y ((x = y ∧ φ(x)) → φ(y))

2. ∃xφ(x) ∧ ∀y ∀z ((φ(y) ∧φ(z)) → y = z) ⇒ ∃x (φ(x) ∧ ∀y (φ(y) → y = x))

6.14 Soundness with Identity predicate

fol:seq:sid:
sec

Proposition 6.34. LK with initial sequents and rules for identity is sound.

Proof. Initial sequents of the form ⇒ t = t are valid, since for every struc-
ture M, M ⊨ t = t. (Note that we assume the term t to be closed, i.e., it
contains no variables, so variable assignments are irrelevant).

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 83

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Suppose the last inference in a derivation is =. Then the premise is t1 =
t2, Γ ⇒ ∆,φ(t1) and the conclusion is t1 = t2, Γ ⇒ ∆,φ(t2). Consider a struc-
ture M. We need to show that the conclusion is valid, i.e., if M ⊨ t1 = t2 and
M ⊨ Γ , then either M ⊨ χ for some χ ∈ ∆ or M ⊨ φ(t2).

By induction hypothesis, the premise is valid. This means that if M ⊨
t1 = t2 and M ⊨ Γ either (a) for some χ ∈ ∆, M ⊨ χ or (b) M ⊨ φ(t1).
In case (a) we are done. Consider case (b). Let s be a variable assignment
with s(x) = ValM(t1). By Proposition 3.17, M, s ⊨ φ(t1). Since s ∼x s,
by Proposition 3.22, M, s ⊨ φ(x). since M ⊨ t1 = t2, we have ValM(t1) =
ValM(t2), and hence s(x) = ValM(t2). By applying Proposition 3.22 again, we
also have M, s ⊨ φ(t2). By Proposition 3.17, M ⊨ φ(t2).

84 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 7

Natural Deduction

This chapter presents a natural deduction system in the style of
Gentzen/Prawitz.

To include or exclude material relevant to natural deduction as a proof
system, use the “prfND” tag.

7.1 Rules and Derivations

fol:ntd:rul:
sec

explanationNatural deduction systems are meant to closely parallel the informal reason-
ing used in mathematical proof (hence it is somewhat “natural”). Natural
deduction proofs begin with assumptions. Inference rules are then applied.
Assumptions are “discharged” by the ¬Intro, →Intro, ∨Elim and ∃Elim in-
ference rules, and the label of the discharged assumption is placed beside the
inference for clarity.

Definition 7.1 (Assumption). An assumption is any sentence in the top-
most position of any branch.

Derivations in natural deduction are certain trees of sentences, where the
topmost sentences are assumptions, and if a sentence stands below one, two,
or three other sequents, it must follow correctly by a rule of inference. The
sentences at the top of the inference are called the premises and the sentence
below the conclusion of the inference. The rules come in pairs, an introduction
and an elimination rule for each logical operator. They introduce a logical
operator in the conclusion or remove a logical operator from a premise of the
rule. Some of the rules allow an assumption of a certain type to be discharged.
To indicate which assumption is discharged by which inference, we also assign
labels to both the assumption and the inference. This is indicated by writing
the assumption as “[φ]n.”

It is customary to consider rules for all the logical operators ∧, ∨, →, ¬,
and ⊥, even if some of those are defined.

85

7.2 Propositional Rules

fol:ntd:prl:
sec

Rules for ∧

φ ψ
∧Intro

φ ∧ ψ

φ ∧ ψ
∧Elimφ

φ ∧ ψ
∧Elim

ψ

Rules for ∨

φ
∨Intro

φ ∨ ψ

ψ
∨Intro

φ ∨ ψ φ ∨ ψ

[φ]n

χ

[ψ]n

χ
n ∨Elimχ

Rules for →

[φ]n

ψ
n →Intro
φ→ ψ

φ→ ψ φ
→Elim

ψ

Rules for ¬

[φ]n

⊥
n ¬Intro¬φ

¬φ φ
¬Elim⊥

86 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Rules for ⊥

⊥ ⊥Iφ

[¬φ]n

⊥
n ⊥Cφ

Note that ¬Intro and ⊥C are very similar: The difference is that ¬Intro derives
a negated sentence ¬φ but ⊥C a positive sentence φ.

Whenever a rule indicates that some assumption may be discharged, we
take this to be a permission, but not a requirement. E.g., in the →Intro rule,
we may discharge any number of assumptions of the form φ in the derivation
of the premise ψ, including zero.

7.3 Quantifier Rules

fol:ntd:qrl:
sec

Rules for ∀

φ(a)
∀Intro∀xφ(x)

∀xφ(x)
∀Elim

φ(t)

In the rules for ∀, t is a closed term (a term that does not contain any variables),
and a is a constant symbol which does not occur in the conclusion ∀xφ(x), or
in any assumption which is undischarged in the derivation ending with the
premise φ(a). We call a the eigenvariable of the ∀Intro inference.1

Rules for ∃

φ(t)
∃Intro∃xφ(x)

∃xφ(x)

[φ(a)]n

χ
n ∃Elimχ

Again, t is a closed term, and a is a constant which does not occur in the
premise ∃xφ(x), in the conclusion χ, or any assumption which is undischarged

1We use the term “eigenvariable” even though a in the above rule is a constant. This
has historical reasons.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 87

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

in the derivations ending with the two premises (other than the assumptions
φ(a)). We call a the eigenvariable of the ∃Elim inference.

The condition that an eigenvariable neither occur in the premises nor in
any assumption that is undischarged in the derivations leading to the premises
for the ∀Intro or ∃Elim inference is called the eigenvariable condition.

explanation Recall the convention that when φ is a formula with the variable x free, we
indicate this by writing φ(x). In the same context, φ(t) then is short for φ[t/x].
So we could also write the ∃Intro rule as:

φ[t/x]
∃Intro∃xφ

Note that t may already occur in φ, e.g., φ might be P (t, x). Thus, inferring
∃xP (t, x) from P (t, t) is a correct application of ∃Intro—you may “replace” one
or more, and not necessarily all, occurrences of t in the premise by the bound
variable x. However, the eigenvariable conditions in ∀Intro and ∃Elim require
that the constant symbol a does not occur in φ. So, you cannot correctly infer
∀xP (a, x) from P (a, a) using ∀Intro.

explanation In ∃Intro and ∀Elim there are no restrictions, and the term t can be any-
thing, so we do not have to worry about any conditions. On the other hand,
in the ∃Elim and ∀Intro rules, the eigenvariable condition requires that the
constant symbol a does not occur anywhere in the conclusion or in an undis-
charged assumption. The condition is necessary to ensure that the system is
sound, i.e., only derives sentences from undischarged assumptions from which
they follow. Without this condition, the following would be allowed:

∃xφ(x)

[φ(a)]1
*∀Intro∀xφ(x)
∃Elim∀xφ(x)

However, ∃xφ(x) ⊭ ∀xφ(x).
As the elimination rules for quantifiers only allow substituting closed terms

for variables, it follows that any formula that can be derived from a set of
sentences is itself a sentence.

7.4 Derivations

fol:ntd:der:
sec

explanation We’ve said what an assumption is, and we’ve given the rules of inference.
Derivations in natural deduction are inductively generated from these: each
derivation either is an assumption on its own, or consists of one, two, or three
derivations followed by a correct inference.

Definition 7.2 (Derivation). A derivation of a sentence φ from assump-
tions Γ is a finite tree of sentences satisfying the following conditions:

1. The topmost sentences of the tree are either in Γ or are discharged by
an inference in the tree.

88 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. The bottommost sentence of the tree is φ.

3. Every sentence in the tree except the sentence φ at the bottom is a
premise of a correct application of an inference rule whose conclusion
stands directly below that sentence in the tree.

We then say that φ is the conclusion of the derivation and Γ its undischarged
assumptions.

If a derivation of φ from Γ exists, we say that φ is derivable from Γ , or
in symbols: Γ ⊢ φ. If there is a derivation of φ in which every assumption is
discharged, we write ⊢ φ.

Example 7.3. Every assumption on its own is a derivation. So, e.g., φ by
itself is a derivation, and so is ψ by itself. We can obtain a new derivation from
these by applying, say, the ∧Intro rule,

φ ψ
∧Intro

φ ∧ ψ

These rules are meant to be general: we can replace the φ and ψ in it with any
sentences, e.g., by χ and θ. Then the conclusion would be χ ∧ θ, and so

χ θ
∧Intro

χ ∧ θ

is a correct derivation. Of course, we can also switch the assumptions, so that
θ plays the role of φ and χ that of ψ. Thus,

θ χ
∧Intro

θ ∧ χ

is also a correct derivation.
We can now apply another rule, say, →Intro, which allows us to conclude

a conditional and allows us to discharge any assumption that is identical to
the antecedent of that conditional. So both of the following would be correct
derivations:

[χ]1 θ
∧Intro

χ ∧ θ
1 →Intro
χ→ (χ ∧ θ)

χ [θ]1
∧Intro

χ ∧ θ
1 →Intro
θ→ (χ ∧ θ)

They show, respectively, that θ ⊢ χ→ (χ ∧ θ) and χ ⊢ θ→ (χ ∧ θ).
Remember that discharging of assumptions is a permission, not a require-

ment: we don’t have to discharge the assumptions. In particular, we can apply
a rule even if the assumptions are not present in the derivation. For instance,
the following is legal, even though there is no assumption φ to be discharged:

ψ
1 →Intro
φ→ ψ

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 89

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

7.5 Examples of Derivations

fol:ntd:pro:
sec

Example 7.4. Let’s give a derivation of the sentence (φ ∧ ψ) → φ.
We begin by writing the desired conclusion at the bottom of the derivation.

(φ ∧ ψ) → φ

Next, we need to figure out what kind of inference could result in a sentence
of this form. The main operator of the conclusion is →, so we’ll try to arrive at
the conclusion using the →Intro rule. It is best to write down the assumptions
involved and label the inference rules as you progress, so it is easy to see whether
all assumptions have been discharged at the end of the proof.

[φ ∧ ψ]1

φ
1 →Intro

(φ ∧ ψ) → φ

We now need to fill in the steps from the assumption φ ∧ ψ to φ. Since we
only have one connective to deal with, ∧, we must use the ∧ elim rule. This
gives us the following proof:

[φ ∧ ψ]1
∧Elimφ

1 →Intro
(φ ∧ ψ) → φ

We now have a correct derivation of (φ ∧ ψ) → φ.

Example 7.5. Now let’s give a derivation of (¬φ ∨ ψ) → (φ→ ψ).
We begin by writing the desired conclusion at the bottom of the derivation.

(¬φ ∨ ψ) → (φ→ ψ)

To find a logical rule that could give us this conclusion, we look at the logical
connectives in the conclusion: ¬, ∨, and →. We only care at the moment about
the first occurrence of → because it is the main operator of the sentence in the
end-sequent, while ¬, ∨ and the second occurrence of → are inside the scope
of another connective, so we will take care of those later. We therefore start
with the →Intro rule. A correct application must look like this:

[¬φ ∨ ψ]1

φ→ ψ
1 →Intro

(¬φ ∨ ψ) → (φ→ ψ)

90 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

This leaves us with two possibilities to continue. Either we can keep working
from the bottom up and look for another application of the →Intro rule, or we
can work from the top down and apply a ∨Elim rule. Let us apply the latter.
We will use the assumption ¬φ ∨ ψ as the leftmost premise of ∨Elim. For a
valid application of ∨Elim, the other two premises must be identical to the
conclusion φ→ ψ, but each may be derived in turn from another assumption,
namely one of the two disjuncts of ¬φ∨ψ. So our derivation will look like this:

[¬φ ∨ ψ]1

[¬φ]2

φ→ ψ

[ψ]2

φ→ ψ
2 ∨Elim

φ→ ψ
1 →Intro

(¬φ ∨ ψ) → (φ→ ψ)

In each of the two branches on the right, we want to derive φ→ ψ, which
is best done using →Intro.

[¬φ ∨ ψ]1

[¬φ]2, [φ]3

ψ
3 →Intro
φ→ ψ

[ψ]2, [φ]4

ψ
4 →Intro
φ→ ψ

2 ∨Elim
φ→ ψ

1 →Intro
(¬φ ∨ ψ) → (φ→ ψ)

For the two missing parts of the derivation, we need derivations of ψ from
¬φ and φ in the middle, and from φ and ψ on the left. Let’s take the former
first. ¬φ and φ are the two premises of ¬Elim:

[¬φ]2 [φ]3
¬Elim⊥

ψ

By using ⊥I , we can obtain ψ as a conclusion and complete the branch.

[¬φ ∨ ψ]1

[¬φ]2 [φ]3
⊥Intro⊥ ⊥Iψ

3 →Intro
φ→ ψ

[ψ]2, [φ]4

ψ
4 →Intro
φ→ ψ

2 ∨Elim
φ→ ψ

1 →Intro
(¬φ ∨ ψ) → (φ→ ψ)

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 91

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Let’s now look at the rightmost branch. Here it’s important to realize
that the definition of derivation allows assumptions to be discharged but does
not require them to be. In other words, if we can derive ψ from one of the
assumptions φ and ψ without using the other, that’s ok. And to derive ψ
from ψ is trivial: ψ by itself is such a derivation, and no inferences are needed.
So we can simply delete the assumption φ.

[¬φ ∨ ψ]1

[¬φ]2 [φ]3
¬Elim⊥ ⊥Iψ

3 →Intro
φ→ ψ

[ψ]2
→Intro

φ→ ψ
2 ∨Elim

φ→ ψ
1 →Intro

(¬φ ∨ ψ) → (φ→ ψ)

Note that in the finished derivation, the rightmost →Intro inference does not
actually discharge any assumptions.

Example 7.6. So far we have not needed the ⊥C rule. It is special in that it
allows us to discharge an assumption that isn’t a sub-formula of the conclusion
of the rule. It is closely related to the ⊥I rule. In fact, the ⊥I rule is a special
case of the ⊥C rule—there is a logic called “intuitionistic logic” in which only
⊥I is allowed. The ⊥C rule is a last resort when nothing else works. For
instance, suppose we want to derive φ ∨ ¬φ. Our usual strategy would be to
attempt to derive φ ∨ ¬φ using ∨Intro. But this would require us to derive
either φ or ¬φ from no assumptions, and this can’t be done. ⊥C to the rescue!

[¬(φ ∨ ¬φ)]1

⊥
1 ⊥Cφ ∨ ¬φ

Now we’re looking for a derivation of ⊥ from ¬(φ ∨ ¬φ). Since ⊥ is the
conclusion of ¬Elim we might try that:

[¬(φ ∨ ¬φ)]1

¬φ

[¬(φ ∨ ¬φ)]1

φ
¬Elim⊥

1 ⊥Cφ ∨ ¬φ

Our strategy for finding a derivation of ¬φ calls for an application of ¬Intro:

92 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

[¬(φ ∨ ¬φ)]1, [φ]2

⊥
2 ¬Intro¬φ

[¬(φ ∨ ¬φ)]1

φ
¬Elim⊥

1 ⊥Cφ ∨ ¬φ

Here, we can get ⊥ easily by applying ¬Elim to the assumption ¬(φ∨¬φ) and
φ ∨ ¬φ which follows from our new assumption φ by ∨Intro:

[¬(φ ∨ ¬φ)]1
[φ]2

∨Introφ ∨ ¬φ
¬Elim⊥

2 ¬Intro¬φ

[¬(φ ∨ ¬φ)]1

φ
¬Elim⊥

1 ⊥Cφ ∨ ¬φ

On the right side we use the same strategy, except we get φ by ⊥C :

[¬(φ ∨ ¬φ)]1
[φ]2

∨Introφ ∨ ¬φ
¬Elim⊥

2 ¬Intro¬φ

[¬(φ ∨ ¬φ)]1
[¬φ]3

∨Introφ ∨ ¬φ
¬Elim⊥

3 ⊥Cφ
¬Elim⊥

1 ⊥Cφ ∨ ¬φ

Problem 7.1. Give derivations that show the following:

1. φ ∧ (ψ ∧ χ) ⊢ (φ ∧ ψ) ∧ χ.

2. φ ∨ (ψ ∨ χ) ⊢ (φ ∨ ψ) ∨ χ.

3. φ→ (ψ→ χ) ⊢ ψ→ (φ→ χ).

4. φ ⊢ ¬¬φ.

Problem 7.2. Give derivations that show the following:

1. (φ ∨ ψ) → χ ⊢ φ→ χ.

2. (φ→ χ) ∧ (ψ→ χ) ⊢ (φ ∨ ψ) → χ.

3. ⊢ ¬(φ ∧ ¬φ).

4. ψ→ φ ⊢ ¬φ→¬ψ.

5. ⊢ (φ→¬φ) →¬φ.

6. ⊢ ¬(φ→ ψ) →¬ψ.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 93

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

7. φ→ χ ⊢ ¬(φ ∧ ¬χ).

8. φ ∧ ¬χ ⊢ ¬(φ→ χ).

9. φ ∨ ψ,¬ψ ⊢ φ.

10. ¬φ ∨ ¬ψ ⊢ ¬(φ ∧ ψ).

11. ⊢ (¬φ ∧ ¬ψ) →¬(φ ∨ ψ).

12. ⊢ ¬(φ ∨ ψ) → (¬φ ∧ ¬ψ).

Problem 7.3. Give derivations that show the following:

1. ¬(φ→ ψ) ⊢ φ.

2. ¬(φ ∧ ψ) ⊢ ¬φ ∨ ¬ψ.

3. φ→ ψ ⊢ ¬φ ∨ ψ.

4. ⊢ ¬¬φ→ φ.

5. φ→ ψ,¬φ→ ψ ⊢ ψ.

6. (φ ∧ ψ) → χ ⊢ (φ→ χ) ∨ (ψ→ χ).

7. (φ→ ψ) → φ ⊢ φ.

8. ⊢ (φ→ ψ) ∨ (ψ→ χ).

(These all require the ⊥C rule.)

7.6 Derivations with Quantifiers

fol:ntd:prq:
sec

Example 7.7. When dealing with quantifiers, we have to make sure not to
violate the eigenvariable condition, and sometimes this requires us to play
around with the order of carrying out certain inferences. In general, it helps
to try and take care of rules subject to the eigenvariable condition first (they
will be lower down in the finished proof).

Let’s see how we’d give a derivation of the formula ∃x¬φ(x) →¬∀xφ(x).
Starting as usual, we write

∃x¬φ(x) →¬∀xφ(x)

We start by writing down what it would take to justify that last step using the
→Intro rule.

94 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

[∃x¬φ(x)]1

¬∀xφ(x)
1 →Intro∃x¬φ(x) →¬∀xφ(x)

Since there is no obvious rule to apply to ¬∀xφ(x), we will proceed by setting
up the derivation so we can use the ∃Elim rule. Here we must pay attention
to the eigenvariable condition, and choose a constant that does not appear in
∃xφ(x) or any assumptions that it depends on. (Since no constant symbols
appear, however, any choice will do fine.)

[∃x¬φ(x)]1

[¬φ(a)]2

¬∀xφ(x)
2 ∃Elim¬∀xφ(x)

1 →Intro∃x¬φ(x) →¬∀xφ(x)

In order to derive ¬∀xφ(x), we will attempt to use the ¬Intro rule: this re-
quires that we derive a contradiction, possibly using ∀xφ(x) as an additional
assumption. Of course, this contradiction may involve the assumption ¬φ(a)
which will be discharged by the ∃Elim inference. We can set it up as follows:

[∃x¬φ(x)]1

[¬φ(a)]2, [∀xφ(x)]3

⊥
3 ¬Intro¬∀xφ(x)

2 ∃Elim¬∀xφ(x)
1 →Intro∃x¬φ(x) →¬∀xφ(x)

It looks like we are close to getting a contradiction. The easiest rule to apply is
the ∀Elim, which has no eigenvariable conditions. Since we can use any term
we want to replace the universally quantified x, it makes the most sense to
continue using a so we can reach a contradiction.

[∃x¬φ(x)]1

[¬φ(a)]2
[∀xφ(x)]3

∀Elim
φ(a)

¬Elim⊥
3 ¬Intro¬∀xφ(x)

2 ∃Elim¬∀xφ(x)
1 →Intro∃x¬φ(x) →¬∀xφ(x)

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 95

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It is important, especially when dealing with quantifiers, to double check
at this point that the eigenvariable condition has not been violated. Since the
only rule we applied that is subject to the eigenvariable condition was ∃Elim,
and the eigenvariable a does not occur in any assumptions it depends on, this
is a correct derivation.

Example 7.8. Sometimes we may derive a formula from other formulas. In
these cases, we may have undischarged assumptions. It is important to keep
track of our assumptions as well as the end goal.

Let’s see how we’d give a derivation of the formula ∃xχ(x, b) from the
assumptions ∃x (φ(x) ∧ ψ(x)) and ∀x (ψ(x) → χ(x, b)). Starting as usual, we
write the conclusion at the bottom.

∃xχ(x, b)

We have two premises to work with. To use the first, i.e., try to find
a derivation of ∃xχ(x, b) from ∃x (φ(x) ∧ ψ(x)) we would use the ∃Elim rule.
Since it has an eigenvariable condition, we will apply that rule first. We get
the following:

∃x (φ(x) ∧ ψ(x))

[φ(a) ∧ ψ(a)]1

∃xχ(x, b)
1 ∃Elim∃xχ(x, b)

The two assumptions we are working with share ψ. It may be useful at this
point to apply ∧Elim to separate out ψ(a).

∃x (φ(x) ∧ ψ(x))

[φ(a) ∧ ψ(a)]1
∧Elim

ψ(a)

∃xχ(x, b)
1 ∃Elim∃xχ(x, b)

The second assumption we have to work with is ∀x (ψ(x) → χ(x, b)). Since
there is no eigenvariable condition we can instantiate x with the constant sym-
bol a using ∀Elim to get ψ(a)→χ(a, b). We now have both ψ(a)→χ(a, b) and
ψ(a). Our next move should be a straightforward application of the →Elim
rule.

96 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

∃x (φ(x) ∧ ψ(x))

∀x (ψ(x) → χ(x, b))
∀Elim

ψ(a) → χ(a, b)

[φ(a) ∧ ψ(a)]1
∧Elim

ψ(a)
→Elim

χ(a, b)

∃xχ(x, b)
1 ∃Elim∃xχ(x, b)

We are so close! One application of ∃Intro and we have reached our goal.

∃x (φ(x) ∧ ψ(x))

∀x (ψ(x) → χ(x, b))
∀Elim

ψ(a) → χ(a, b)

[φ(a) ∧ ψ(a)]1
∧Elim

ψ(a)
→Elim

χ(a, b)
∃Intro∃xχ(x, b)

1 ∃Elim∃xχ(x, b)

Since we ensured at each step that the eigenvariable conditions were not vio-
lated, we can be confident that this is a correct derivation.

Example 7.9. Give a derivation of the formula ¬∀xφ(x) from the assump-
tions ∀xφ(x) → ∃y ψ(y) and ¬∃y ψ(y). Starting as usual, we write the target
formula at the bottom.

¬∀xφ(x)

The last line of the derivation is a negation, so let’s try using ¬Intro. This will
require that we figure out how to derive a contradiction.

[∀xφ(x)]1

⊥
1 ¬Intro¬∀xφ(x)

So far so good. We can use ∀Elim but it’s not obvious if that will help us get to
our goal. Instead, let’s use one of our assumptions. ∀xφ(x)→∃y ψ(y) together
with ∀xφ(x) will allow us to use the →Elim rule.

∀xφ(x) →∃y ψ(y) [∀xφ(x)]1
→Elim∃y ψ(y)

⊥
1 ¬Intro¬∀xφ(x)

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 97

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

We now have one final assumption to work with, and it looks like this will help
us reach a contradiction by using ¬Elim.

¬∃y ψ(y)

∀xφ(x) →∃y ψ(y) [∀xφ(x)]1
→Elim∃y ψ(y)

¬Elim⊥
1 ¬Intro¬∀xφ(x)

Problem 7.4. Give derivations that show the following:

1. ⊢ (∀xφ(x) ∧ ∀y ψ(y)) →∀z (φ(z) ∧ ψ(z)).

2. ⊢ (∃xφ(x) ∨ ∃y ψ(y)) →∃z (φ(z) ∨ ψ(z)).

3. ∀x (φ(x) → ψ) ⊢ ∃y φ(y) → ψ.

4. ∀x¬φ(x) ⊢ ¬∃xφ(x).

5. ⊢ ¬∃xφ(x) →∀x¬φ(x).

6. ⊢ ¬∃x∀y ((φ(x, y) →¬φ(y, y)) ∧ (¬φ(y, y) → φ(x, y))).

Problem 7.5. Give derivations that show the following:

1. ⊢ ¬∀xφ(x) →∃x¬φ(x).

2. (∀xφ(x) → ψ) ⊢ ∃y (φ(y) → ψ).

3. ⊢ ∃x (φ(x) →∀y φ(y)).

(These all require the ⊥C rule.)

7.7 Proof-Theoretic Notions

fol:ntd:ptn:
sec

This section collects the definitions the provability relation and consis-
tency for natural deduction.

explanation Just as we’ve defined a number of important semantic notions (validity, en-
tailment, satisfiability), we now define corresponding proof-theoretic notions.
These are not defined by appeal to satisfaction of sentences in structures, but
by appeal to the derivability or non-derivability of certain sentences from oth-
ers. It was an important discovery that these notions coincide. That they do
is the content of the soundness and completeness theorems.

Definition 7.10 (Theorems). A sentence φ is a theorem if there is a deriva-
tion of φ in natural deduction in which all assumptions are discharged. We
write ⊢ φ if φ is a theorem and ⊬ φ if it is not.

98 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 7.11 (Derivability). A sentence φ is derivable from a set of sen-
tences Γ , Γ ⊢ φ, if there is a derivation with conclusion φ and in which every
assumption is either discharged or is in Γ . If φ is not derivable from Γ we
write Γ ⊬ φ.

Definition 7.12 (Consistency). A set of sentences Γ is inconsistent iff Γ ⊢
⊥. If Γ is not inconsistent, i.e., if Γ ⊬ ⊥, we say it is consistent.

Proposition 7.13 (Reflexivity).fol:ntd:ptn:

prop:reflexivity

If φ ∈ Γ , then Γ ⊢ φ.

Proof. The assumption φ by itself is a derivation of φ where every undischarged
assumption (i.e., φ) is in Γ .

Proposition 7.14 (Monotonicity).fol:ntd:ptn:

prop:monotonicity

If Γ ⊆ ∆ and Γ ⊢ φ, then ∆ ⊢ φ.

Proof. Any derivation of φ from Γ is also a derivation of φ from ∆.

Proposition 7.15 (Transitivity).fol:ntd:ptn:

prop:transitivity

If Γ ⊢ φ and {φ}∪∆ ⊢ ψ, then Γ ∪∆ ⊢
ψ.

Proof. If Γ ⊢ φ, there is a derivation δ0 of φ with all undischarged assumptions
in Γ . If {φ} ∪∆ ⊢ ψ, then there is a derivation δ1 of ψ with all undischarged
assumptions in {φ} ∪∆. Now consider:

∆, [φ]1

δ1

ψ
1 →Intro
φ→ ψ

Γ

δ0

φ
→Elim

ψ

The undischarged assumptions are now all among Γ ∪∆, so this shows Γ ∪∆ ⊢
ψ.

When Γ = {φ1, φ2, . . . , φk} is a finite set we may use the simplified notation
φ1, φ2, . . . , φk ⊢ ψ for Γ ⊢ ψ, in particular φ ⊢ ψ means that {φ} ⊢ ψ.

Note that if Γ ⊢ φ and φ ⊢ ψ, then Γ ⊢ ψ. It follows also that if φ1, . . . , φn ⊢
ψ and Γ ⊢ φi for each i, then Γ ⊢ ψ.

Proposition 7.16.fol:ntd:ptn:

prop:incons

The following are equivalent.

1. Γ is inconsistent.

2. Γ ⊢ φ for every sentence φ.

3. Γ ⊢ φ and Γ ⊢ ¬φ for some sentence φ.

Proof. Exercise.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 99

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 7.6. Prove Proposition 7.16

Proposition 7.17 (Compactness). fol:ntd:ptn:

prop:proves-compact

1. If Γ ⊢ φ then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊢ φ.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ⊢ φ, then there is a derivation δ of φ from Γ . Let Γ0 be the
set of undischarged assumptions of δ. Since any derivation is finite, Γ0

can only contain finitely many sentences. So, δ is a derivation of φ from
a finite Γ0 ⊆ Γ .

2. This is the contrapositive of (1) for the special case φ ≡ ⊥.

7.8 Derivability and Consistency

fol:ntd:prv:
sec

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 7.18. fol:ntd:prv:

prop:provability-contr

If Γ ⊢ φ and Γ ∪ {φ} is inconsistent, then Γ is inconsis-
tent.

Proof. Let the derivation of φ from Γ be δ1 and the derivation of ⊥ from
Γ ∪ {φ} be δ2. We can then derive:

Γ, [φ]1

δ2

⊥
1 ¬Intro¬φ

Γ

δ1

φ
¬Elim⊥

In the new derivation, the assumption φ is discharged, so it is a derivation
from Γ .

Proposition 7.19. fol:ntd:prv:

prop:prov-incons

Γ ⊢ φ iff Γ ∪ {¬φ} is inconsistent.

Proof. First suppose Γ ⊢ φ, i.e., there is a derivation δ0 of φ from undischarged
assumptions Γ . We obtain a derivation of ⊥ from Γ ∪ {¬φ} as follows:

¬φ

Γ

δ0

φ
¬Elim⊥

100 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Now assume Γ∪{¬φ} is inconsistent, and let δ1 be the corresponding deriva-
tion of ⊥ from undischarged assumptions in Γ ∪{¬φ}. We obtain a derivation
of φ from Γ alone by using ⊥C :

Γ, [¬φ]1

δ1

⊥
1 ⊥Cφ

Problem 7.7. Prove that Γ ⊢ ¬φ iff Γ ∪ {φ} is inconsistent.

Proposition 7.20.fol:ntd:prv:

prop:explicit-inc

If Γ ⊢ φ and ¬φ ∈ Γ , then Γ is inconsistent.

Proof. Suppose Γ ⊢ φ and ¬φ ∈ Γ . Then there is a derivation δ of φ from Γ .
Consider this simple application of the ¬Elim rule:

¬φ

Γ

δ

φ
¬Elim⊥

Since ¬φ ∈ Γ , all undischarged assumptions are in Γ , this shows that Γ ⊢ ⊥.

Proposition 7.21.fol:ntd:prv:

prop:provability-exhaustive

If Γ ∪{φ} and Γ ∪{¬φ} are both inconsistent, then Γ is
inconsistent.

Proof. There are derivations δ1 and δ2 of ⊥ from Γ ∪{φ} and ⊥ from Γ ∪{¬φ},
respectively. We can then derive

Γ, [¬φ]2

δ2

⊥
2 ¬Intro¬¬φ

Γ, [φ]1

δ1

⊥
1 ¬Intro¬φ

¬Elim⊥

Since the assumptions φ and ¬φ are discharged, this is a derivation of ⊥ from Γ
alone. Hence Γ is inconsistent.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 101

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

7.9 Derivability and the Propositional Connectives

fol:ntd:ppr:
sec

explanation We establish that the derivability relation ⊢ of natural deduction is strong
enough to establish some basic facts involving the propositional connectives,
such as that φ ∧ ψ ⊢ φ and φ,φ→ ψ ⊢ ψ (modus ponens). These facts are
needed for the proof of the completeness theorem.

Proposition 7.22. fol:ntd:ppr:

prop:provability-land

1. fol:ntd:ppr:

prop:provability-land-left

Both φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ

2. fol:ntd:ppr:

prop:provability-land-right

φ,ψ ⊢ φ ∧ ψ.

Proof. 1. We can derive both

φ ∧ ψ
∧Elimφ

φ ∧ ψ
∧Elim

ψ

2. We can derive:

φ ψ
∧Intro

φ ∧ ψ

Proposition 7.23. fol:ntd:ppr:

prop:provability-lor

1. φ ∨ ψ,¬φ,¬ψ is inconsistent.

2. Both φ ⊢ φ ∨ ψ and ψ ⊢ φ ∨ ψ.

Proof. 1. Consider the following derivation:

φ ∨ ψ
¬φ [φ]1

¬Elim⊥
¬ψ [ψ]1

¬Elim⊥
1 ∨Elim⊥

This is a derivation of ⊥ from undischarged assumptions φ ∨ ψ, ¬φ, and
¬ψ.

2. We can derive both

φ
∨Intro

φ ∨ ψ
ψ

∨Intro
φ ∨ ψ

Proposition 7.24. fol:ntd:ppr:

prop:provability-lif

1. fol:ntd:ppr:

prop:provability-lif-left

φ,φ→ ψ ⊢ ψ.

2. fol:ntd:ppr:

prop:provability-lif-right

Both ¬φ ⊢ φ→ ψ and ψ ⊢ φ→ ψ.

102 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. 1. We can derive:

φ→ ψ φ
→Elim

ψ

2. This is shown by the following two derivations:

¬φ [φ]1
¬Elim⊥ ⊥Iψ

1 →Intro
φ→ ψ

ψ
→Intro

φ→ ψ

Note that →Intro may, but does not have to, discharge the assumption φ.

7.10 Derivability and the Quantifiers

fol:ntd:qpr:
sec

explanationThe completeness theorem also requires that the natural deduction rules yield
the facts about ⊢ established in this section.

Theorem 7.25.fol:ntd:qpr:

thm:strong-generalization

If c is a constant not occurring in Γ or φ(x) and Γ ⊢ φ(c),
then Γ ⊢ ∀xφ(x).

Proof. Let δ be a derivation of φ(c) from Γ . By adding a ∀Intro inference,
we obtain a derivation of ∀xφ(x). Since c does not occur in Γ or φ(x), the
eigenvariable condition is satisfied.

Proposition 7.26.fol:ntd:qpr:

prop:provability-quantifiers

1. φ(t) ⊢ ∃xφ(x).

2. ∀xφ(x) ⊢ φ(t).

Proof. 1. The following is a derivation of ∃xφ(x) from φ(t):

φ(t)
∃Intro∃xφ(x)

2. The following is a derivation of φ(t) from ∀xφ(x):

∀xφ(x)
∀Elim

φ(t)

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 103

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

7.11 Soundness

fol:ntd:sou:
sec

explanation A derivation system, such as natural deduction, is sound if it cannot derive
things that do not actually follow. Soundness is thus a kind of guaranteed
safety property for derivation systems. Depending on which proof theoretic
property is in question, we would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do
not hold, the derivation system is deficient—it would derive too much. Con-
sequently, establishing the soundness of a derivation system is of the utmost
importance.

Theorem 7.27 (Soundness). fol:ntd:sou:

thm:soundness

If φ is derivable from the undischarged as-
sumptions Γ , then Γ ⊨ φ.

Proof. Let δ be a derivation of φ. We proceed by induction on the number of
inferences in δ.

For the induction basis we show the claim if the number of inferences is 0.
In this case, δ consists only of a single sentence φ, i.e., an assumption. That
assumption is undischarged, since assumptions can only be discharged by in-
ferences, and there are no inferences. So, any structure M that satisfies all of
the undischarged assumptions of the proof also satisfies φ.

Now for the inductive step. Suppose that δ contains n inferences. The
premise(s) of the lowermost inference are derived using sub-derivations, each
of which contains fewer than n inferences. We assume the induction hypoth-
esis: The premises of the lowermost inference follow from the undischarged
assumptions of the sub-derivations ending in those premises. We have to show
that the conclusion φ follows from the undischarged assumptions of the entire
proof.

We distinguish cases according to the type of the lowermost inference. First,
we consider the possible inferences with only one premise.

1. Suppose that the last inference is ¬Intro: The derivation has the form

Γ, [φ]n

δ1

⊥
n ¬Intro¬φ

104 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

By inductive hypothesis, ⊥ follows from the undischarged assumptions
Γ ∪{φ} of δ1. Consider a structure M. We need to show that, if M ⊨ Γ ,
then M ⊨ ¬φ. Suppose for reductio that M ⊨ Γ , but M ⊭ ¬φ, i.e.,
M ⊨ φ. This would mean that M ⊨ Γ ∪ {φ}. This is contrary to our
inductive hypothesis. So, M ⊨ ¬φ.

2. The last inference is ∧Elim: There are two variants: φ or ψ may be
inferred from the premise φ∧ψ. Consider the first case. The derivation δ
looks like this:

Γ

δ1

φ ∧ ψ
∧Elimφ

By inductive hypothesis, φ ∧ ψ follows from the undischarged assump-
tions Γ of δ1. Consider a structure M. We need to show that, if M ⊨ Γ ,
then M ⊨ φ. Suppose M ⊨ Γ . By our inductive hypothesis (Γ ⊨ φ ∧ ψ),
we know that M ⊨ φ∧ψ. By definition, M ⊨ φ∧ψ iff M ⊨ φ and M ⊨ ψ.
(The case where ψ is inferred from φ ∧ ψ is handled similarly.)

3. The last inference is ∨Intro: There are two variants: φ ∨ ψ may be
inferred from the premise φ or the premise ψ. Consider the first case.
The derivation has the form

Γ

δ1

φ
∨Intro

φ ∨ ψ

By inductive hypothesis, φ follows from the undischarged assumptions Γ
of δ1. Consider a structure M. We need to show that, if M ⊨ Γ , then
M ⊨ φ ∨ ψ. Suppose M ⊨ Γ ; then M ⊨ φ since Γ ⊨ φ (the inductive
hypothesis). So it must also be the case that M ⊨ φ∨ψ. (The case where
φ ∨ ψ is inferred from ψ is handled similarly.)

4. The last inference is →Intro: φ → ψ is inferred from a subproof with
assumption φ and conclusion ψ, i.e.,

Γ, [φ]n

δ1

ψ
n →Intro
φ→ ψ

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 105

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

By inductive hypothesis, ψ follows from the undischarged assumptions
of δ1, i.e., Γ ∪ {φ} ⊨ ψ. Consider a structure M. The undischarged
assumptions of δ are just Γ , since φ is discharged at the last inference.
So we need to show that Γ ⊨ φ→ψ. For reductio, suppose that for some
structure M, M ⊨ Γ but M ⊭ φ→ ψ. So, M ⊨ φ and M ⊭ ψ. But
by hypothesis, ψ is a consequence of Γ ∪ {φ}, i.e., M ⊨ ψ, which is a
contradiction. So, Γ ⊨ φ→ ψ.

5. The last inference is ⊥I : Here, δ ends in

Γ

δ1

⊥ ⊥Iφ

By induction hypothesis, Γ ⊨ ⊥. We have to show that Γ ⊨ φ. Suppose
not; then for some M we have M ⊨ Γ and M ⊭ φ. But we always
have M ⊭ ⊥, so this would mean that Γ ⊭ ⊥, contrary to the induction
hypothesis.

6. The last inference is ⊥C : Exercise.

7. The last inference is ∀Intro: Then δ has the form

Γ

δ1

φ(a)
∀Intro∀xφ(x)

The premise φ(a) is a consequence of the undischarged assumptions Γ
by induction hypothesis. Consider some structure, M, such that M ⊨ Γ .
We need to show that M ⊨ ∀xφ(x). Since ∀xφ(x) is a sentence, this
means we have to show that for every variable assignment s, M, s ⊨ φ(x)
(Proposition 3.18). Since Γ consists entirely of sentences, M, s ⊨ ψ for all
ψ ∈ Γ by Definition 3.11. Let M′ be like M except that aM

′
= s(x). Since

a does not occur in Γ , M′ ⊨ Γ by Corollary 3.20. Since Γ ⊨ φ(a), M′ ⊨
φ(a). Since φ(a) is a sentence, M′, s ⊨ φ(a) by Proposition 3.17. M′, s ⊨
φ(x) iff M′ ⊨ φ(a) by Proposition 3.22 (recall that φ(a) is just φ(x)[a/x]).
So, M′, s ⊨ φ(x). Since a does not occur in φ(x), by Proposition 3.19,
M, s ⊨ φ(x). But s was an arbitrary variable assignment, so M ⊨ ∀xφ(x).

8. The last inference is ∃Intro: Exercise.

9. The last inference is ∀Elim: Exercise.

106 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Now let’s consider the possible inferences with several premises: ∨Elim,
∧Intro, →Elim, and ∃Elim.

1. The last inference is ∧Intro. φ∧ψ is inferred from the premises φ and ψ
and δ has the form

Γ1

δ1

φ

Γ2

δ2

ψ
∧Intro

φ ∧ ψ

By induction hypothesis, φ follows from the undischarged assumptions Γ1

of δ1 and ψ follows from the undischarged assumptions Γ2 of δ2. The
undischarged assumptions of δ are Γ1 ∪ Γ2, so we have to show that
Γ1 ∪ Γ2 ⊨ φ ∧ ψ. Consider a structure M with M ⊨ Γ1 ∪ Γ2. Since
M ⊨ Γ1, it must be the case that M ⊨ φ as Γ1 ⊨ φ, and since M ⊨ Γ2,
M ⊨ ψ since Γ2 ⊨ ψ. Together, M ⊨ φ ∧ ψ.

2. The last inference is ∨Elim: Exercise.

3. The last inference is →Elim. ψ is inferred from the premises φ→ψ and φ.
The derivation δ looks like this:

Γ1

δ1

φ→ ψ

Γ2

δ2

φ
→Elim

ψ

By induction hypothesis, φ→ ψ follows from the undischarged assump-
tions Γ1 of δ1 and φ follows from the undischarged assumptions Γ2 of δ2.
Consider a structure M. We need to show that, if M ⊨ Γ1 ∪ Γ2, then
M ⊨ ψ. Suppose M ⊨ Γ1 ∪ Γ2. Since Γ1 ⊨ φ→ ψ, M ⊨ φ→ ψ. Since
Γ2 ⊨ φ, we have M ⊨ φ. This means that M ⊨ ψ (For if M ⊭ ψ, since
M ⊨ φ, we’d have M ⊭ φ→ ψ, contradicting M ⊨ φ→ ψ).

4. The last inference is ¬Elim: Exercise.

5. The last inference is ∃Elim: Exercise.

Problem 7.8. Complete the proof of Theorem 7.27.

Corollary 7.28.fol:ntd:sou:

cor:weak-soundness

If ⊢ φ, then φ is valid.

Corollary 7.29.fol:ntd:sou:

cor:consistency-soundness

If Γ is satisfiable, then it is consistent.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 107

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then
Γ ⊢ ⊥, i.e., there is a derivation of ⊥ from undischarged assumptions in Γ . By
Theorem 7.27, any structure M that satisfies Γ must satisfy ⊥. Since M ⊭ ⊥
for every structure M, no M can satisfy Γ , i.e., Γ is not satisfiable.

7.12 Derivations with Identity predicate

fol:ntd:ide:
sec

Derivations with identity predicate require additional inference rules.

=Introt = t

t1 = t2 φ(t1)
=Elim

φ(t2)

t1 = t2 φ(t2)
=Elim

φ(t1)

In the above rules, t, t1, and t2 are closed terms. The =Intro rule allows us
to derive any identity statement of the form t = t outright, from no assump-
tions.

Example 7.30. If s and t are closed terms, then φ(s), s = t ⊢ φ(t):

s = t φ(s)
=Elim

φ(t)

This may be familiar as the “principle of substitutability of identicals,” or
Leibniz’ Law.

Problem 7.9. Prove that = is both symmetric and transitive, i.e., give deriva-
tions of ∀x∀y (x = y→ y = x) and ∀x ∀y ∀z((x = y ∧ y = z) → x = z)

Example 7.31. We derive the sentence

∀x∀y ((φ(x) ∧ φ(y)) → x = y)

from the sentence

∃x∀y (φ(y) → y = x)

We develop the derivation backwards:

∃x∀y (φ(y) → y = x) [φ(a) ∧ φ(b)]1

a = b
1 →Intro

((φ(a) ∧ φ(b)) → a = b)
∀Intro∀y ((φ(a) ∧ φ(y)) → a = y)
∀Intro∀x∀y ((φ(x) ∧ φ(y)) → x = y)

108 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

We’ll now have to use the main assumption: since it is an existential formula,
we use ∃Elim to derive the intermediary conclusion a = b.

∃x∀y (φ(y) → y = x)

[∀y (φ(y) → y = c)]2

[φ(a) ∧ φ(b)]1

a = b
2 ∃Elim

a = b
1 →Intro

((φ(a) ∧ φ(b)) → a = b)
∀Intro∀y ((φ(a) ∧ φ(y)) → a = y)
∀Intro∀x ∀y ((φ(x) ∧ φ(y)) → x = y)

The sub-derivation on the top right is completed by using its assumptions to
show that a = c and b = c. This requires two separate derivations. The
derivation for a = c is as follows:

[∀y (φ(y) → y = c)]2
∀Elim

φ(a) → a = c

[φ(a) ∧ φ(b)]1
∧Elim

φ(a)
→Elima = c

From a = c and b = c we derive a = b by =Elim.

Problem 7.10. Give derivations of the following formulas:

1. ∀x ∀y ((x = y ∧ φ(x)) → φ(y))

2. ∃xφ(x) ∧ ∀y ∀z ((φ(y) ∧ φ(z)) → y = z) →∃x (φ(x) ∧ ∀y (φ(y) → y = x))

7.13 Soundness with Identity predicate

fol:ntd:sid:
sec

Proposition 7.32. Natural deduction with rules for = is sound.

Proof. Any formula of the form t = t is valid, since for every structure M,
M ⊨ t = t. (Note that we assume the term t to be closed, i.e., it contains no
variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is =Elim, i.e., the derivation has
the following form:

Γ1

δ1

t1 = t2

Γ2

δ2

φ(t1)
=Elim

φ(t2)

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 109

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

The premises t1 = t2 and φ(t1) are derived from undischarged assumptions Γ1

and Γ2, respectively. We want to show that φ(t2) follows from Γ1 ∪ Γ2. Con-
sider a structure M with M ⊨ Γ1 ∪ Γ2. By induction hypothesis, M ⊨ φ(t1)
and M ⊨ t1 = t2. Therefore, ValM(t1) = ValM(t2). Let s be any variable
assignment, and m = ValM(t1) = ValM(t2). By Proposition 3.22, M, s ⊨ φ(t1)
iff M, s[m/x] ⊨ φ(x) iff M, s ⊨ φ(t2). Since M ⊨ φ(t1), we have M ⊨ φ(t2).

110 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 8

Tableaux

This chapter presents a signed analytic tableaux system.
To include or exclude material relevant to natural deduction as a proof

system, use the “prfTab” tag.

8.1 Rules and Tableaux

fol:tab:rul:
sec

A tableau is a systematic survey of the possible ways a sentence can be true
or false in a structure. The building blocks of a tableau are signed formulas:
sentences plus a truth value “sign,” either T or F. These signed formulas are
arranged in a (downward growing) tree.

Definition 8.1. A signed formula is a pair consisting of a truth value and
a sentence, i.e., either:

Tφ or Fφ.

Intuitively, we might read Tφ as “φ might be true” and Fφ as “φ might
be false” (in some structure).

Each signed formula in the tree is either an assumption (which are listed
at the very top of the tree), or it is obtained from a signed formula above it
by one of a number of rules of inference. There are two rules for each possible
main operator of the preceding formula, one for the case where the sign is T,
and one for the case where the sign is F. Some rules allow the tree to branch,
and some only add signed formulas to the branch. A rule may be (and often
must be) applied not to the immediately preceding signed formula, but to any
signed formula in the branch from the root to the place the rule is applied.

A branch is closed when it contains both Tφ and Fφ. A closed tableau
is one where every branch is closed. Under the intuitive interpretation, any
branch describes a joint possibility, but Tφ and Fφ are not jointly possible.
In other words, if a branch is closed, the possibility it describes has been ruled
out. In particular, that means that a closed tableau rules out all possibilities

111

of simultaneously making every assumption of the form Tφ true and every
assumption of the form Fφ false.

A closed tableau for φ is a closed tableau with root Fφ. If such a closed
tableau exists, all possibilities for φ being false have been ruled out; i.e., φ
must be true in every structure.

8.2 Propositional Rules

fol:tab:prl:
sec

Rules for ¬

T¬φ
¬TFφ

F¬φ
¬FTφ

Rules for ∧

Tφ ∧ ψ
∧TTφ

Tψ

Fφ ∧ ψ
∧FFφ | Fψ

Rules for ∨

Tφ ∨ ψ
∨TTφ | Tψ

Fφ ∨ ψ
∨FFφ

Fψ

Rules for →

Tφ→ ψ
→TFφ | Tψ

Fφ→ ψ
→FTφ

Fψ

The Cut Rule

CutTφ | Fφ

112 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

The Cut rule is not applied “to” a previous signed formula; rather, it allows
every branch in a tableau to be split in two, one branch containing Tφ, the
other Fφ. It is not necessary—any set of signed formulas with a closed tableau
has one not using Cut—but it allows us to combine tableaux in a convenient
way.

8.3 Quantifier Rules

fol:tab:qrl:
sec

Rules for ∀

T∀xφ(x)
∀TTφ(t)

F ∀xφ(x)
∀FFφ(a)

In ∀T, t is a closed term (i.e., one without variables). In ∀F, a is a constant
symbol which must not occur anywhere in the branch above ∀F rule. We call
a the eigenvariable of the ∀F inference.1

Rules for ∃

T∃xφ(x)
∃TTφ(a)

F ∃xφ(x)
∃FFφ(t)

Again, t is a closed term, and a is a constant symbol which does not occur in
the branch above the ∃T rule. We call a the eigenvariable of the ∃T inference.

The condition that an eigenvariable not occur in the branch above the ∀F
or ∃T inference is called the eigenvariable condition.

explanationRecall the convention that when φ is a formula with the variable x free, we
indicate this by writing φ(x). In the same context, φ(t) then is short for φ[t/x].
So we could also write the ∃F rule as:

F ∃xφ
∃FFφ[t/x]

Note that t may already occur in φ, e.g., φ might be P (t, x). Thus, inferring
F P (t, t) from F ∃xP (t, x) is a correct application of ∃F. However, the eigen-
variable conditions in ∀F and ∃T require that the constant symbol a does not
occur in φ. So, you cannot correctly infer F P (a, a) from F ∀xP (a, x) using ∀F.

explanationIn ∀T and ∃F there are no restrictions on the term t. On the other hand, in
the ∃T and ∀F rules, the eigenvariable condition requires that the constant sym-
bol a does not occur anywhere in the branches above the respective inference.

1We use the term “eigenvariable” even though a in the above rule is a constant symbol.
This has historical reasons.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 113

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It is necessary to ensure that the system is sound. Without this condition, the
following would be a closed tableau for ∃xφ(x) →∀xφ(x):

1.
2.
3.
4.
5.

F ∃xφ(x) →∀xφ(x)
T∃xφ(x)
F ∀xφ(x)
Tφ(a)
Fφ(a)
⊗

Assumption
→F 1
→F 1
∃T 2
∀F 3

However, ∃xφ(x) →∀xφ(x) is not valid.

8.4 Tableaux

fol:tab:der:
sec

explanation We’ve said what an assumption is, and we’ve given the rules of inference.
Tableaux are inductively generated from these: each tableau either is a single
branch consisting of one or more assumptions, or it results from a tableau by
applying one of the rules of inference on a branch.

Definition 8.2 (Tableau). A tableau for assumptions S1φ1, . . . , Snφn (where
each Si is either T or F) is a finite tree of signed formulas satisfying the following
conditions:

1. The n topmost signed formulas of the tree are Siφi, one below the other.

2. Every signed formula in the tree that is not one of the assumptions results
from a correct application of an inference rule to a signed formula in the
branch above it.

A branch of a tableau is closed iff it contains both Tφ and Fφ, and open
otherwise. A tableau in which every branch is closed is a closed tableau (for its
set of assumptions). If a tableau is not closed, i.e., if it contains at least one
open branch, it is open.

Example 8.3. Every set of assumptions on its own is a tableau, but it will
generally not be closed. (Obviously, it is closed only if the assumptions already
contain a pair of signed formulas Tφ and Fφ.)

From a tableau (open or closed) we can obtain a new, larger one by applying
one of the rules of inference to a signed formula φ in it. The rule will append
one or more signed formulas to the end of any branch containing the occurrence
of φ to which we apply the rule.

For instance, consider the assumption Tφ∧¬φ. Here is the (open) tableau
consisting of just that assumption:

1. Tφ ∧ ¬φ Assumption

We obtain a new tableau from it by applying the ∧T rule to the assumption.
That rule allows us to add two new lines to the tableau, Tφ and T¬φ:

114 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.
2.
3.

Tφ ∧ ¬φ
Tφ
T¬φ

Assumption
∧T 1
∧T 1

When we write down tableaux, we record the rules we’ve applied on the right
(e.g., ∧T1 means that the signed formula on that line is the result of applying
the ∧T rule to the signed formula on line 1). This new tableau now contains
additional signed formulas, but to only one (T¬φ) can we apply a rule (in this
case, the ¬T rule). This results in the closed tableau

1.
2.
3.
4.

Tφ ∧ ¬φ
Tφ
T¬φ
Fφ
⊗

Assumption
∧T 1
∧T 1
¬T 3

8.5 Examples of Tableaux

fol:tab:pro:
sec

Example 8.4. Let’s find a closed tableau for the sentence (φ ∧ ψ) → φ.

We begin by writing the corresponding assumption at the top of the tableau.

1. F (φ ∧ ψ) → φ Assumption

There is only one assumption, so only one signed formula to which we can
apply a rule. (For every signed formula, there is always at most one rule that
can be applied: it’s the rule for the corresponding sign and main operator of
the sentence.) In this case, this means, we must apply →F.

1.
2.
3.

F (φ ∧ ψ) → φ ✓
Tφ ∧ ψ
Fφ

Assumption
→F 1
→F 1

To keep track of which signed formulas we have applied their corresponding
rules to, we write a checkmark next to the sentence. However, only write a
checkmark if the rule has been applied to all open branches. Once a signed
formula has had the corresponding rule applied in every open branch, we will
not have to return to it and apply the rule again. In this case, there is only
one branch, so the rule only has to be applied once. (Note that checkmarks
are only a convenience for constructing tableaux and are not officially part of
the syntax of tableaux.)

There is one new signed formula to which we can apply a rule: the Tφ∧ψ
on line 2. Applying the ∧T rule results in:

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 115

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.
2.
3.
4.
5.

F (φ ∧ ψ) → φ ✓
Tφ ∧ ψ ✓

Fφ
Tφ
Tψ
⊗

Assumption
→F 1
→F 1
∧T 2
∧T 2

Since the branch now contains both Tφ (on line 4) and Fφ (on line 3), the
branch is closed. Since it is the only branch, the tableau is closed. We have
found a closed tableau for (φ ∧ ψ) → φ.

Example 8.5. Now let’s find a closed tableau for (¬φ ∨ ψ) → (φ→ ψ).

We begin with the corresponding assumption:

1. F (¬φ ∨ ψ) → (φ→ ψ) Assumption

The one signed formula in this tableau has main operator → and sign F, so we
apply the →F rule to it to obtain:

1.
2.
3.

F (¬φ ∨ ψ) → (φ→ ψ) ✓
T¬φ ∨ ψ
F (φ→ ψ)

Assumption
→F 1
→F 1

We now have a choice as to whether to apply ∨T to line 2 or →F to line 3.
It actually doesn’t matter which order we pick, as long as each signed formula
has its corresponding rule applied in every branch. So let’s pick the first one.
The ∨T rule allows the tableau to branch, and the two conclusions of the rule
will be the new signed formulas added to the two new branches. This results
in:

1.
2.
3.

4.

F (¬φ ∨ ψ) → (φ→ ψ) ✓
T¬φ ∨ ψ ✓
F (φ→ ψ)

T¬φ Tψ

Assumption
→F 1
→F 1

∨T 2

We have not applied the →F rule to line 3 yet: let’s do that now. To save
time, we apply it to both branches. Recall that we write a checkmark next to
a signed formula only if we have applied the corresponding rule in every open
branch. So it’s a good idea to apply a rule at the end of every branch that
contains the signed formula the rule applies to. That way we won’t have to
return to that signed formula lower down in the various branches.

116 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.
2.
3.

4.
5.
6.

F (¬φ ∨ ψ) → (φ→ ψ) ✓
T¬φ ∨ ψ ✓
F (φ→ ψ) ✓

T¬φ
Tφ
Fψ

Tψ
Tφ
Fψ
⊗

Assumption
→F 1
→F 1

∨T 2
→F 3
→F 3

The right branch is now closed. On the left branch, we can still apply the ¬T
rule to line 4. This results in Fφ and closes the left branch:

1.
2.
3.

4.
5.
6.
7.

F (¬φ ∨ ψ) → (φ→ ψ) ✓
T¬φ ∨ ψ ✓
F (φ→ ψ) ✓

T¬φ
Tφ
Fψ
Fφ
⊗

Tψ
Tφ
Fψ
⊗

Assumption
→F 1
→F 1

∨T 2
→F 3
→F 3
¬T 4

Example 8.6. We can give tableaux for any number of signed formulas as
assumptions. Often it is also necessary to apply more than one rule that allows
branching; and in general a tableau can have any number of branches. For
instance, consider a tableau for {Tφ ∨ (ψ ∧ χ),F (φ ∨ ψ) ∧ (φ ∨ χ)}. We start
by applying the ∨T to the first assumption:

1.
2.

3.

Tφ ∨ (ψ ∧ χ) ✓
F (φ ∨ ψ) ∧ (φ ∨ χ)

Tφ Tψ ∧ χ

Assumption
Assumption

∨T 1

Now we can apply the ∧F rule to line 2. We do this on both branches simul-
taneously, and can therefore check off line 2:

1.
2.

3.

4.

Tφ ∨ (ψ ∧ χ) ✓
F (φ ∨ ψ) ∧ (φ ∨ χ) ✓

Tφ

Fφ ∨ ψ Fφ ∨ χ

Tψ ∧ χ

Fφ ∨ ψ Fφ ∨ χ

Assumption
Assumption

∨T 1

∧F 2

Now we can apply ∨F to all the branches containing φ ∨ ψ:

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 117

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.
2.

3.

4.
5.
6.

Tφ ∨ (ψ ∧ χ) ✓
F (φ ∨ ψ) ∧ (φ ∨ χ) ✓

Tφ

Fφ ∨ ψ ✓
Fφ
Fψ
⊗

Fφ ∨ χ

Tψ ∧ χ

Fφ ∨ ψ ✓
Fφ
Fψ

Fφ ∨ χ

Assumption
Assumption

∨T 1

∧F 2
∨F 4
∨F 4

The leftmost branch is now closed. Let’s now apply ∨F to φ ∨ χ:

1.
2.

3.

4.
5.
6.
7.
8.

Tφ ∨ (ψ ∧ χ) ✓
F (φ ∨ ψ) ∧ (φ ∨ χ) ✓

Tφ

Fφ ∨ ψ ✓
Fφ
Fψ
⊗

Fφ ∨ χ ✓

Fφ
F χ
⊗

Tψ ∧ χ

Fφ ∨ ψ ✓
Fφ
Fψ

Fφ ∨ χ ✓

Fφ
F χ

Assumption
Assumption

∨T 1

∧F 2
∨F 4
∨F 4
∨F 4
∨F 4

Note that we moved the result of applying ∨F a second time below for clarity.
In this instance it would not have been needed, since the justifications would
have been the same.

Two branches remain open, and Tψ ∧ χ on line 3 remains unchecked. We
apply ∧T to it to obtain a closed tableau:

1.
2.

3.

4.
5.
6.
7.
8.

Tφ ∨ (ψ ∧ χ) ✓
F (φ ∨ ψ) ∧ (φ ∨ χ) ✓

Tφ

Fφ ∨ ψ ✓
Fφ
Fψ
⊗

Fφ ∨ χ ✓
Fφ
F χ
⊗

Tψ ∧ χ ✓

Fφ ∨ ψ ✓
Fφ
Fψ
Tψ
Tχ
⊗

Fφ ∨ χ ✓
Fφ
F χ
Tψ
Tχ
⊗

Assumption
Assumption

∨T 1

∧F 2
∨F 4
∨F 4
∧T 3
∧T 3

For comparison, here’s a closed tableau for the same set of assumptions in
which the rules are applied in a different order:

118 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.
2.

3.
4.
5.

6.
7.
8.

Tφ ∨ (ψ ∧ χ) ✓
F (φ ∨ ψ) ∧ (φ ∨ χ) ✓

Fφ ∨ ψ ✓
Fφ
Fψ

Tφ
⊗

Tψ ∧ χ ✓
Tψ
Tχ
⊗

Fφ ∨ χ ✓
Fφ
F χ

Tφ
⊗

Tψ ∧ χ ✓
Tψ
Tχ
⊗

Assumption
Assumption

∧F 2
∨F 3
∨F 3

∨T 1
∧T 6
∧T 6

Problem 8.1. Give closed tableaux of the following:

1. Tφ ∧ (ψ ∧ χ),F (φ ∧ ψ) ∧ χ.

2. Tφ ∨ (ψ ∨ χ),F (φ ∨ ψ) ∨ χ.

3. Tφ→ (ψ→ χ),Fψ→ (φ→ χ).

4. Tφ,F¬¬φ.

Problem 8.2. Give closed tableaux of the following:

1. T (φ ∨ ψ) → χ,Fφ→ χ.

2. T (φ→ χ) ∧ (ψ→ χ),F (φ ∨ ψ) → χ.

3. F¬(φ ∧ ¬φ).

4. Tψ→ φ,F¬φ→¬ψ.

5. F (φ→¬φ) →¬φ.

6. F¬(φ→ ψ) →¬ψ.

7. Tφ→ χ,F¬(φ ∧ ¬χ).

8. Tφ ∧ ¬χ,F¬(φ→ χ).

9. Tφ ∨ ψ,¬ψ,Fφ.

10. T¬φ ∨ ¬ψ,F¬(φ ∧ ψ).

11. F (¬φ ∧ ¬ψ) →¬(φ ∨ ψ).

12. F¬(φ ∨ ψ) → (¬φ ∧ ¬ψ).

Problem 8.3. Give closed tableaux of the following:

1. T¬(φ→ ψ),Fφ.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 119

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. T¬(φ ∧ ψ),F¬φ ∨ ¬ψ.

3. Tφ→ ψ,F¬φ ∨ ψ.

4. F¬¬φ→ φ.

5. Tφ→ ψ,T¬φ→ ψ,Fψ.

6. T (φ ∧ ψ) → χ,F (φ→ χ) ∨ (ψ→ χ).

7. T (φ→ ψ) → φ,Fφ.

8. F (φ→ ψ) ∨ (ψ→ χ).

8.6 Tableaux with Quantifiers

fol:tab:prq:
sec

Example 8.7. When dealing with quantifiers, we have to make sure not to
violate the eigenvariable condition, and sometimes this requires us to play
around with the order of carrying out certain inferences. In general, it helps
to try and take care of rules subject to the eigenvariable condition first (they
will be higher up in the finished tableau).

Let’s see how we’d give a tableau for the sentence ∃x¬φ(x) → ¬∀xφ(x).
Starting as usual, we start by recording the assumption,

1. F ∃x¬φ(x) →¬∀xφ(x) Assumption

Since the main operator is →, we apply the →F:

1.
2.
3.

F ∃x¬φ(x) →¬∀xφ(x) ✓
T∃x¬φ(x)
F¬∀xφ(x)

Assumption
→F 1
→F 1

The next line to deal with is 2. We use ∃T. This requires a new constant
symbol; since no constant symbols yet occur, we can pick any one, say, a.

1.
2.
3.
4.

F ∃x¬φ(x) →¬∀xφ(x) ✓
T∃x¬φ(x) ✓
F¬∀xφ(x)
T¬φ(a)

Assumption
→F 1
→F 1
∃T 2

Now we apply ¬F to line 3:

1.
2.
3.
4.
5.

F ∃x¬φ(x) →¬∀xφ(x) ✓
T∃x¬φ(x) ✓
F¬∀xφ(x) ✓

T¬φ(a)
T∀xφ(x)

Assumption
→F 1
→F 1
∃T 2
¬F 3

120 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

We obtain a closed tableau by applying ¬T to line 4, followed by ∀T to line 5.

1.
2.
3.
4.
5.
6.
7.

F ∃x¬φ(x) →¬∀xφ(x) ✓
T∃x¬φ(x) ✓
F¬∀xφ(x) ✓

T¬φ(a)
T∀xφ(x)
Fφ(a)
Tφ(a)
⊗

Assumption
→F 1
→F 1
∃T 2
¬F 3
¬T 4
∀T 5

Example 8.8. Let’s see how we’d give a tableau for the set

F ∃xχ(x, b),T∃x (φ(x) ∧ ψ(x)),T∀x (ψ(x) → χ(x, b)).

Starting as usual, we start with the assumptions:

1.
2.
3.

F ∃xχ(x, b)
T∃x (φ(x) ∧ ψ(x))

T∀x (ψ(x) → χ(x, b))

Assumption
Assumption
Assumption

We should always apply a rule with the eigenvariable condition first; in this
case that would be ∃T to line 2. Since the assumptions contain the constant
symbol b, we have to use a different one; let’s pick a again.

1.
2.
3.
4.

F ∃xχ(x, b)
T∃x (φ(x) ∧ ψ(x)) ✓
T∀x (ψ(x) → χ(x, b))

Tφ(a) ∧ ψ(a)

Assumption
Assumption
Assumption
∃T 2

If we now apply ∃F to line 1 or ∀T to line 3, we have to decide which term t
to substitute for x. Since there is no eigenvariable condition for these rules, we
can pick any term we like. In some cases we may even have to apply the rule
several times with different ts. But as a general rule, it pays to pick one of the
terms already occurring in the tableau—in this case, a and b—and in this case
we can guess that a will be more likely to result in a closed branch.

1.
2.
3.
4.
5.
6.

F ∃xχ(x, b)
T∃x (φ(x) ∧ ψ(x)) ✓
T∀x (ψ(x) → χ(x, b))

Tφ(a) ∧ ψ(a)
F χ(a, b)

Tψ(a) → χ(a, b)

Assumption
Assumption
Assumption
∃T 2
∃F 1
∀T 3

We don’t check the signed formulas in lines 1 and 3, since we may have to use
them again. Now apply ∧T to line 4:

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 121

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.
2.
3.
4.
5.
6.
7.
8.

F ∃xχ(x, b)
T∃x (φ(x) ∧ ψ(x)) ✓
T∀x (ψ(x) → χ(x, b))

Tφ(a) ∧ ψ(a) ✓
F χ(a, b)

Tψ(a) → χ(a, b)
Tφ(a)
Tψ(a)

Assumption
Assumption
Assumption
∃T 2
∃F 1
∀T 3
∧T 4
∧T 4

If we now apply →T to line 6, the tableau closes:

1.
2.
3.
4.
5.
6.
7.
8.

9.

F ∃xχ(x, b)
T∃x (φ(x) ∧ ψ(x)) ✓
T∀x (ψ(x) → χ(x, b))

Tφ(a) ∧ ψ(a) ✓
F χ(a, b)

Tψ(a) → χ(a, b) ✓
Tφ(a)
Tψ(a)

Fψ(a)
⊗

Tχ(a, b)
⊗

Assumption
Assumption
Assumption
∃T 2
∃F 1
∀T 3
∧T 4
∧T 4

→T 6

Example 8.9. We construct a tableau for the set

T∀xφ(x),T∀xφ(x) →∃y ψ(y),T¬∃y ψ(y).

Starting as usual, we write down the assumptions:

1.
2.
3.

T∀xφ(x)
T∀xφ(x) →∃y ψ(y)

T¬∃y ψ(y)

Assumption
Assumption
Assumption

We begin by applying the ¬T rule to line 3. A corollary to the rule “always
apply rules with eigenvariable conditions first” is “defer applying quantifier
rules without eigenvariable conditions until needed.” Also, defer rules that
result in a split.

1.
2.
3.
4.

T∀xφ(x)
T∀xφ(x) →∃y ψ(y)

T¬∃y ψ(y) ✓
F ∃y ψ(y)

Assumption
Assumption
Assumption
¬T 3

The new line 4 requires ∃F, a quantifier rule without the eigenvariable condi-
tion. So we defer this in favor of using →T on line 2.

122 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.
2.
3.
4.

5.

T∀xφ(x)
T∀xφ(x) →∃y ψ(y) ✓

T¬∃y ψ(y) ✓
F ∃y ψ(y)

F ∀xφ(x) T∃y ψ(y)

Assumption
Assumption
Assumption
¬T 3

→T 2

Both new signed formulas require rules with eigenvariable conditions, so these
should be next:

1.
2.
3.
4.

5.
6.

T∀xφ(x)
T∀xφ(x) →∃y ψ(y) ✓

T¬∃y ψ(y) ✓
F ∃y ψ(y)

F ∀xφ(x) ✓
Fφ(b)

T∃y ψ(y) ✓
Tψ(c)

Assumption
Assumption
Assumption
¬T 3

→T 2
∀F 5; ∃T 5

To close the branches, we have to use the signed formulas on lines 1 and 3.
The corresponding rules (∀T and ∃F) don’t have eigenvariable conditions, so
we are free to pick whichever terms are suitable. In this case, that’s b and c,
respectively.

1.
2.
3.
4.

5.
6.
7.

T∀xφ(x)
T∀xφ(x) →∃y ψ(y) ✓

T¬∃y ψ(y) ✓
F ∃y ψ(y)

F ∀xφ(x) ✓
Fφ(b)
Tφ(b)
⊗

T∃y ψ(y) ✓
Tψ(c)
Fψ(c)
⊗

Assumption
Assumption
Assumption
¬T 3

→T 2
∀F 5; ∃T 5
∀T 1; ∃F 4

Problem 8.4. Give closed tableaux of the following:

1. F (∀xφ(x) ∧ ∀y ψ(y)) →∀z (φ(z) ∧ ψ(z)).

2. F (∃xφ(x) ∨ ∃y ψ(y)) →∃z (φ(z) ∨ ψ(z)).

3. T∀x (φ(x) → ψ),F ∃y φ(y) → ψ.

4. T∀x¬φ(x),F¬∃xφ(x).

5. F¬∃xφ(x) →∀x¬φ(x).

6. F¬∃x∀y ((φ(x, y) →¬φ(y, y)) ∧ (¬φ(y, y) → φ(x, y))).

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 123

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 8.5. Give closed tableaux of the following:

1. F¬∀xφ(x) →∃x¬φ(x).

2. T (∀xφ(x) → ψ),F ∃y (φ(y) → ψ).

3. F ∃x (φ(x) →∀y φ(y)).

8.7 Proof-Theoretic Notions

fol:tab:ptn:
sec

This section collects the definitions of the provability relation and con-
sistency for tableaux.

explanation Just as we’ve defined a number of important semantic notions (validity, en-
tailment, satisfiability), we now define corresponding proof-theoretic notions.
These are not defined by appeal to satisfaction of sentences in structures, but
by appeal to the existence of certain closed tableaux. It was an important dis-
covery that these notions coincide. That they do is the content of the soundness
and completeness theorems.

Definition 8.10 (Theorems). A sentence φ is a theorem if there is a closed
tableau for Fφ. We write ⊢ φ if φ is a theorem and ⊬ φ if it is not.

Definition 8.11 (Derivability). A sentence φ is derivable from a set of sen-
tences Γ , Γ ⊢ φ iff there is a finite set {ψ1, . . . , ψn} ⊆ Γ and a closed tableau
for the set

{Fφ,Tψ1, . . . ,Tψn}.

If φ is not derivable from Γ we write Γ ⊬ φ.

Definition 8.12 (Consistency). A set of sentences Γ is inconsistent iff there
is a finite set {ψ1, . . . , ψn} ⊆ Γ and a closed tableau for the set

{Tψ1, . . . ,Tψn}.

If Γ is not inconsistent, we say it is consistent.

Proposition 8.13 (Reflexivity). fol:tab:ptn:

prop:reflexivity

If φ ∈ Γ , then Γ ⊢ φ.

Proof. If φ ∈ Γ , {φ} is a finite subset of Γ and the tableau

1.
2.

Fφ
Tφ
⊗

Assumption
Assumption

124 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

is closed.

Proposition 8.14 (Monotonicity).fol:tab:ptn:

prop:monotonicity

If Γ ⊆ ∆ and Γ ⊢ φ, then ∆ ⊢ φ.

Proof. Any finite subset of Γ is also a finite subset of ∆.

Proposition 8.15 (Transitivity).fol:tab:ptn:

prop:transitivity

If Γ ⊢ φ and {φ}∪∆ ⊢ ψ, then Γ ∪∆ ⊢
ψ.

Proof. If {φ} ∪ ∆ ⊢ ψ, then there is a finite subset ∆0 = {χ1, . . . , χn} ⊆ ∆
such that

{Fψ,Tφ,Tχ1, . . . ,Tχn}

has a closed tableau. If Γ ⊢ φ then there are θ1, . . . , θm such that

{Fφ,Tθ1, . . . ,Tθm}

has a closed tableau.
Now consider the tableau with assumptions

Fψ,Tχ1, . . . ,Tχn,Tθ1, . . . ,Tθm.

Apply the Cut rule on φ. This generates two branches, one has Tφ in it, the
other Fφ. Thus, on the one branch, all of

{Fψ,Tφ,Tχ1, . . . ,Tχn}

are available. Since there is a closed tableau for these assumptions, we can
attach it to that branch; every branch through Tφ closes. On the other branch,
all of

{Fφ,Tθ1, . . . ,Tθm}

are available, so we can also complete the other side to obtain a closed tableau.
This shows Γ ∪∆ ⊢ ψ.

Note that this means that in particular if Γ ⊢ φ and φ ⊢ ψ, then Γ ⊢ ψ. It
follows also that if φ1, . . . , φn ⊢ ψ and Γ ⊢ φi for each i, then Γ ⊢ ψ.

Proposition 8.16.fol:tab:ptn:

prop:incons

Γ is inconsistent iff Γ ⊢ φ for every sentence φ.

Proof. Exercise.

Problem 8.6. Prove Proposition 8.16

Proposition 8.17 (Compactness).fol:tab:ptn:

prop:proves-compact

1. If Γ ⊢ φ then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊢ φ.

2. If every finite subset of Γ is consistent, then Γ is consistent.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 125

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. 1. If Γ ⊢ φ, then there is a finite subset Γ0 = {ψ1, . . . , ψn} and a
closed tableau for

{Fφ,Tψ1, . . . ,Tψn}
This tableau also shows Γ0 ⊢ φ.

2. If Γ is inconsistent, then for some finite subset Γ0 = {ψ1, . . . , ψn} there
is a closed tableau for

{Tψ1, . . . ,Tψn}
This closed tableau shows that Γ0 is inconsistent.

8.8 Derivability and Consistency

fol:tab:prv:
sec

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 8.18. fol:tab:prv:

prop:provability-contr

If Γ ⊢ φ and Γ ∪ {φ} is inconsistent, then Γ is inconsis-
tent.

Proof. There are finite Γ0 = {ψ1, . . . , ψn} and Γ1 = {χ1, . . . , χn} ⊆ Γ such
that

{Fφ,Tψ1, . . . ,Tψn}
{Tφ,Tχ1, . . . ,Tχm}

have closed tableaux. Using the Cut rule on φ we can combine these into a
single closed tableau that shows Γ0 ∪ Γ1 is inconsistent. Since Γ0 ⊆ Γ and
Γ1 ⊆ Γ , Γ0 ∪ Γ1 ⊆ Γ , hence Γ is inconsistent.

Proposition 8.19. fol:tab:prv:

prop:prov-incons

Γ ⊢ φ iff Γ ∪ {¬φ} is inconsistent.

Proof. First suppose Γ ⊢ φ, i.e., there is a closed tableau for

{Fφ,Tψ1, . . . ,Tψn}

Using the ¬T rule, this can be turned into a closed tableau for

{T¬φ,Tψ1, . . . ,Tψn}.

On the other hand, if there is a closed tableau for the latter, we can turn it
into a closed tableau of the former by removing every formula that results from
¬T applied to the first assumption T¬φ as well as that assumption, and adding
the assumption Fφ. For if a branch was closed before because it contained the
conclusion of ¬T applied to T¬φ, i.e., Fφ, the corresponding branch in the
new tableau is also closed. If a branch in the old tableau was closed because
it contained the assumption T¬φ as well as F¬φ we can turn it into a closed
branch by applying ¬F to F¬φ to obtain Tφ. This closes the branch since we
added Fφ as an assumption.

126 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 8.7. Prove that Γ ⊢ ¬φ iff Γ ∪ {φ} is inconsistent.

Proposition 8.20.fol:tab:prv:

prop:explicit-inc

If Γ ⊢ φ and ¬φ ∈ Γ , then Γ is inconsistent.

Proof. Suppose Γ ⊢ φ and ¬φ ∈ Γ . Then there are ψ1, . . . , ψn ∈ Γ such that

{Fφ,Tψ1, . . . ,Tψn}

has a closed tableau. Replace the assumption Fφ by T¬φ, and insert the
conclusion of ¬T applied to Fφ after the assumptions. Any sentence in the
tableau justified by appeal to line 1 in the old tableau is now justified by appeal
to line n+ 1. So if the old tableau was closed, the new one is. It shows that Γ
is inconsistent, since all assumptions are in Γ .

Proposition 8.21.fol:tab:prv:

prop:provability-exhaustive

If Γ ∪{φ} and Γ ∪{¬φ} are both inconsistent, then Γ is
inconsistent.

Proof. If there are ψ1, . . . , ψn ∈ Γ and χ1, . . . , χm ∈ Γ such that

{Tφ,Tψ1, . . . ,Tψn} and

{T¬φ,Tχ1, . . . ,Tχm}

both have closed tableaux, we can construct a single, combined tableau that
shows that Γ is inconsistent by using as assumptions Tψ1, . . . , Tψn together
with Tχ1, . . . , Tχm, followed by an application of the Cut rule. This yields
two branches, one starting with Tφ, the other with Fφ.

On the left left side, add the part of the first tableau below its assumptions.
Here, every rule application is still correct, since each of the assumptions of the
first tableau, including Tφ, is available. Thus, every branch below Tφ closes.

On the right side, add the part of the second tableau below its assumption,
with the results of any applications of ¬T to T¬φ removed. The conclusion of
¬T to T¬φ is Fφ, which is nevertheless available, as it is the conclusion of the
Cut rule on the right side of the combined tableau.

If a branch in the second tableau was closed because it contained the as-
sumption T¬φ (which no longer appears as an assumption in the combined
tableau) as well as F¬φ, we can applying ¬F to F¬φ to obtain Tφ. Now
the corresponding branch in the combined tableau also closes, because it con-
tains the right-hand conclusion of the Cut rule, Fφ. If a branch in the second
tableau closed for any other reason, the corresponding branch in the combined
tableau also closes, since any signed formulas other than T¬φ occurring on the
branch in the old, second tableau also occur on the corresponding branch in
the combined tableau.

8.9 Derivability and the Propositional Connectives

fol:tab:ppr:
sec

explanationWe establish that the derivability relation ⊢ of tableaux is strong enough to
establish some basic facts involving the propositional connectives, such as that
φ ∧ ψ ⊢ φ and φ,φ→ ψ ⊢ ψ (modus ponens). These facts are needed for the
proof of the completeness theorem.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 127

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 8.22. fol:tab:ppr:

prop:provability-land

1. fol:tab:ppr:

prop:provability-land-left

Both φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ.

2. fol:tab:ppr:

prop:provability-land-right

φ,ψ ⊢ φ ∧ ψ.

Proof. 1. Both {Fφ,Tφ ∧ ψ} and {Fψ,Tφ ∧ ψ} have closed tableaux

1.
2.
3.
4.

Fφ
Tφ ∧ ψ

Tφ
Tψ
⊗

Assumption
Assumption
∧T 2
∧T 2

1.
2.
3.
4.

Fψ
Tφ ∧ ψ

Tφ
Tψ
⊗

Assumption
Assumption
∧T 2
∧T 2

2. Here is a closed tableau for {Tφ,Tψ,Fφ ∧ ψ}:

1.
2.
3.

4.

Fφ ∧ ψ
Tφ
Tψ

Fφ
⊗

Fψ
⊗

Assumption
Assumption
Assumption

∧F 1

Proposition 8.23. fol:tab:ppr:

prop:provability-lor

1. {φ ∨ ψ,¬φ,¬ψ} is inconsistent.

2. Both φ ⊢ φ ∨ ψ and ψ ⊢ φ ∨ ψ.

Proof. 1. We give a closed tableau of {Tφ ∨ ψ,T¬φ,T¬ψ}:

1.
2.
3.
4.
5.

6.

Tφ ∨ ψ
T¬φ
T¬ψ
Fφ
Fψ

Tφ
⊗

Tψ
⊗

Assumption
Assumption
Assumption
¬T 2
¬T 3

∨T 1

128 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. Both {Fφ ∨ ψ,Tφ} and {Fφ ∨ ψ,Tψ} have closed tableaux:

1.
2.
3.
4.

Fφ ∨ ψ
Tφ
Fφ
Fψ
⊗

Assumption
Assumption
∨F 1
∨F 1

1.
2.
3.
4.

Fφ ∨ ψ
Tψ
Fφ
Fψ
⊗

Assumption
Assumption
∨F 1
∨F 1

Proposition 8.24.fol:tab:ppr:

prop:provability-lif

1.fol:tab:ppr:

prop:provability-lif-left

φ,φ→ ψ ⊢ ψ.

2.fol:tab:ppr:

prop:provability-lif-right

Both ¬φ ⊢ φ→ ψ and ψ ⊢ φ→ ψ.

Proof. 1. {Fψ,Tφ→ ψ,Tφ} has a closed tableau:

1.
2.
3.

4.

Fψ
Tφ→ ψ

Tφ

Fφ
⊗

Tψ
⊗

Assumption
Assumption
Assumption

→T 2

2. Both {Fφ→ ψ,T¬φ} and {Fφ→ ψ,Tψ} have closed tableaux:

1.
2.
3.
4.
5.

Fφ→ ψ
T¬φ
Tφ
Fψ
Fφ
⊗

Assumption
Assumption
→F 1
→F 1
¬T 2

1.
2.
3.
4.

Fφ→ ψ
Tψ
Tφ
Fψ
⊗

Assumption
Assumption
→F 1
→F 1

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 129

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

8.10 Derivability and the Quantifiers

fol:tab:qpr:
sec

explanation The completeness theorem also requires that the tableaux rules yield the facts
about ⊢ established in this section.

Theorem 8.25. fol:tab:qpr:

thm:strong-generalization

If c is a constant not occurring in Γ or φ(x) and Γ ⊢ φ(c),
then Γ ⊢ ∀xφ(x).

Proof. Suppose Γ ⊢ φ(c), i.e., there are ψ1, . . . , ψn ∈ Γ and a closed tableau
for

{Fφ(c),Tψ1, . . . ,Tψn}.

We have to show that there is also a closed tableau for

{F ∀xφ(x),Tψ1, . . . ,Tψn}.

Take the closed tableau and replace the first assumption with F ∀xφ(x), and
insert Fφ(c) after the assumptions.

Fφ(c)
Tψ1...
Tψn

F ∀xφ(x)
Tψ1...
Tψn
Fφ(c)

The tableau is still closed, since all sentences available as assumptions before
are still available at the top of the tableau. The inserted line is the result of
a correct application of ∀F, since the constant symbol c does not occur in ψ1,
. . . , ψn or ∀xφ(x), i.e., it does not occur above the inserted line in the new
tableau.

Proposition 8.26. fol:tab:qpr:

prop:provability-quantifiers

1. φ(t) ⊢ ∃xφ(x).

2. ∀xφ(x) ⊢ φ(t).

Proof. 1. A closed tableau for F ∃xφ(x),Tφ(t) is:

1.
2.
3.

F ∃xφ(x)
Tφ(t)
Fφ(t)
⊗

Assumption
Assumption
∃F 1

2. A closed tableau for Fφ(t),T∀xφ(x), is:

130 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1.
2.
3.

Fφ(t)
T∀xφ(x)
Tφ(t)
⊗

Assumption
Assumption
∀T 2

8.11 Soundness

fol:tab:sou:
sec

explanationA derivation system, such as tableaux, is sound if it cannot derive things that
do not actually hold. Soundness is thus a kind of guaranteed safety property
for derivation systems. Depending on which proof theoretic property is in
question, we would like to know for instance, that

1. every derivable φ is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do
not hold, the derivation system is deficient—it would derive too much. Con-
sequently, establishing the soundness of a derivation system is of the utmost
importance.

Because all these proof-theoretic properties are defined via closed tableaux
of some kind or other, proving (1)–(3) above requires proving something about
the semantic properties of closed tableaux. We will first define what it means
for a signed formula to be satisfied in a structure, and then show that if a
tableau is closed, no structure satisfies all its assumptions. (1)–(3) then follow
as corollaries from this result.

Definition 8.27. A structure M satisfies a signed formula Tφ iff M ⊨ φ, and
it satisfies Fφ iff M ⊭ φ. M satisfies a set of signed formulas Γ iff it satisfies
every Sφ ∈ Γ . Γ is satisfiable if there is a structure that satisfies it, and
unsatisfiable otherwise.

Theorem 8.28 (Soundness).fol:tab:sou:

thm:tableau-soundness

If Γ has a closed tableau, Γ is unsatisfiable.

Proof. Let’s call a branch of a tableau satisfiable iff the set of signed formulas
on it is satisfiable, and let’s call a tableau satisfiable if it contains at least one
satisfiable branch.

We show the following: Extending a satisfiable tableau by one of the rules
of inference always results in a satisfiable tableau. This will prove the theo-
rem: any closed tableau results by applying rules of inference to the tableau
consisting only of assumptions from Γ . So if Γ were satisfiable, any tableau
for it would be satisfiable. A closed tableau, however, is clearly not satisfiable:

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 131

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

every branch contains both Tφ and Fφ, and no structure can both satisfy and
not satisfy φ.

Suppose we have a satisfiable tableau, i.e., a tableau with at least one
satisfiable branch. Applying a rule of inference either adds signed formulas
to a branch, or splits a branch in two. If the tableau has a satisfiable branch
which is not extended by the rule application in question, it remains a satisfiable
branch in the extended tableau, so the extended tableau is satisfiable. So we
only have to consider the case where a rule is applied to a satisfiable branch.

Let Γ be the set of signed formulas on that branch, and let Sφ ∈ Γ be the
signed formula to which the rule is applied. If the rule does not result in a split
branch, we have to show that the extended branch, i.e., Γ together with the
conclusions of the rule, is still satisfiable. If the rule results in a split branch,
we have to show that at least one of the two resulting branches is satisfiable.

First, we consider the possible inferences that do not result in a split branch.

1. The branch is expanded by applying ¬T to T¬ψ ∈ Γ . Then the extended
branch contains the signed formulas Γ ∪ {Fψ}. Suppose M ⊨ Γ . In
particular, M ⊨ ¬ψ. Thus, M ⊭ ψ, i.e., M satisfies Fψ.

2. The branch is expanded by applying ¬F to F¬ψ ∈ Γ : Exercise.

3. The branch is expanded by applying ∧T to Tψ ∧χ ∈ Γ , which results in
two new signed formulas on the branch: Tψ and Tχ. Suppose M ⊨ Γ ,
in particular M ⊨ ψ ∧ χ. Then M ⊨ ψ and M ⊨ χ. This means that M
satisfies both Tψ and Tχ.

4. The branch is expanded by applying ∨F to Fψ ∨ χ ∈ Γ : Exercise.

5. The branch is expanded by applying →F to Fψ→χ ∈ Γ : This results in
two new signed formulas on the branch: Tψ and F χ. Suppose M ⊨ Γ ,
in particular M ⊭ ψ→ χ. Then M ⊨ ψ and M ⊭ χ. This means that M
satisfies both Tψ and F χ.

6. The branch is expanded by applying ∀T to T∀xψ(x) ∈ Γ : This results in
a new signed formula Tφ(t) on the branch. Suppose M ⊨ Γ , in particular,
M ⊨ ∀xφ(x). By Proposition 3.30, M ⊨ φ(t). Consequently, M satisfies
Tφ(t).

7. The branch is expanded by applying ∀F to F ∀xψ(x) ∈ Γ : This results in
a new signed formula Fφ(a) where a is a constant symbol not occurring
in Γ . Since Γ is satisfiable, there is a M such that M ⊨ Γ , in particular
M ⊭ ∀xψ(x). We have to show that Γ ∪ {Fφ(a)} is satisfiable. To do
this, we define a suitable M′ as follows.

By Proposition 3.18, M ⊭ ∀xψ(x) iff for some s, M, s ⊭ ψ(x). Now
let M′ be just like M, except aM

′
= s(x). By Corollary 3.20, for any

Tχ ∈ Γ , M′ ⊨ χ, and for any F χ ∈ Γ , M′ ⊭ χ, since a does not occur
in Γ .

132 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

By Proposition 3.19, M′, s ⊭ φ(x). By Proposition 3.22, M′, s ⊭ φ(a).
Since φ(a) is a sentence, by Proposition 3.17, M′ ⊭ φ(a), i.e., M′ satisfies
Fφ(a).

8. The branch is expanded by applying ∃T to T∃xψ(x) ∈ Γ : Exercise.

9. The branch is expanded by applying ∃F to F ∃xψ(x) ∈ Γ : Exercise.

Now let’s consider the possible inferences that result in a split branch.

1. The branch is expanded by applying ∧F to Fψ ∧ χ ∈ Γ , which results in
two branches, a left one continuing through Fψ and a right one through
F χ. Suppose M ⊨ Γ , in particular M ⊭ ψ ∧ χ. Then M ⊭ ψ or M ⊭ χ.
In the former case, M satisfies Fψ, i.e., M satisfies the formulas on the
left branch. In the latter, M satisfies F χ, i.e., M satisfies the formulas
on the right branch.

2. The branch is expanded by applying ∨T to Tψ ∨ χ ∈ Γ : Exercise.

3. The branch is expanded by applying →T to Tψ→ χ ∈ Γ : Exercise.

4. The branch is expanded by Cut: This results in two branches, one con-
taining Tψ, the other containing Fψ. Since M ⊨ Γ and either M ⊨ ψ or
M ⊭ ψ, M satisfies either the left or the right branch.

Problem 8.8. Complete the proof of Theorem 8.28.

Corollary 8.29.fol:tab:sou:

cor:weak-soundness

If ⊢ φ then φ is valid.

Corollary 8.30.fol:tab:sou:

cor:entailment-soundness

If Γ ⊢ φ then Γ ⊨ φ.

Proof. If Γ ⊢ φ then for some ψ1, . . . , ψn ∈ Γ , {Fφ,Tψ1, . . . ,Tψn} has a
closed tableau. By Theorem 8.28, every structure M either makes some ψi
false or makes φ true. Hence, if M ⊨ Γ then also M ⊨ φ.

Corollary 8.31.fol:tab:sou:

cor:consistency-soundness

If Γ is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then
there are ψ1, . . . , ψn ∈ Γ and a closed tableau for {Tψ1, . . . ,Tψn}. By Theo-
rem 8.28, there is no M such that M ⊨ ψi for all i = 1, . . . , n. But then Γ is
not satisfiable.

8.12 Tableaux with Identity predicate

fol:tab:ide:
sec

Tableaux with identity predicate require additional inference rules. The rules
for = are (t, t1, and t2 are closed terms):

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 133

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

=
T t = t

T t1 = t2

Tφ(t1)
=TTφ(t2)

T t1 = t2

Fφ(t1)
=FFφ(t2)

Note that in contrast to all the other rules, =T and =F require that two
signed formulas already appear on the branch, namely both T t1 = t2 and
Sφ(t1).

Example 8.32. If s and t are closed terms, then s = t, φ(s) ⊢ φ(t):

1.
2.
3.
4.

Fφ(t)
Ts = t
Tφ(s)
Tφ(t)
⊗

Assumption
Assumption
Assumption
=T 2, 3

This may be familiar as the principle of substitutability of identicals, or Leibniz’
Law.

Tableaux prove that = is symmetric, i.e., that s1 = s2 ⊢ s2 = s1:

1.
2.
3.
4.

F s2 = s1
Ts1 = s2
Ts1 = s1
Ts2 = s1

⊗

Assumption
Assumption
=
=T 2, 3

Here, line 2 is the first prerequisite formula Ts1 = s2 of =T. Line 3 is the
second one, of the form Tφ(s2)—think of φ(x) as x = s1, then φ(s1) is s1 = s1
and φ(s2) is s2 = s1.

They also prove that = is transitive, i.e., that s1 = s2, s2 = s3 ⊢ s1 = s3:

1.
2.
3.
4.

F s1 = s3
Ts1 = s2
Ts2 = s3
Ts1 = s3

⊗

Assumption
Assumption
Assumption
=T 3, 2

In this tableau, the first prerequisite formula of =T is line 3, Ts2 = s3 (s2
plays the role of t1, and s3 the role of t2). The second prerequisite, of the
form Tφ(s2) is line 2. Here, think of φ(x) as s1 = x; that makes φ(s2) into
t1 = t2 (i.e., line 2) and φ(s3) into the formula s1 = s3 in the conclusion.

Problem 8.9. Give closed tableaux for the following:

1. F ∀x∀y ((x = y ∧ φ(x)) → φ(y))

134 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. F ∃x (φ(x) ∧ ∀y (φ(y) → y = x)),
T∃xφ(x) ∧ ∀y ∀z ((φ(y) ∧ φ(z)) → y = z)

8.13 Soundness with Identity predicate

fol:tab:sid:
sec Proposition 8.33. Tableaux with rules for identity are sound: no closed tableau

is satisfiable.

Proof. We just have to show as before that if a tableau has a satisfiable branch,
the branch resulting from applying one of the rules for = to it is also satisfiable.
Let Γ be the set of signed formulas on the branch, and let M be a structure
satisfying Γ .

Suppose the branch is expanded using =, i.e., by adding the signed for-
mula T t = t. Trivially, M ⊨ t = t, so M also satisfies Γ ∪ {T t = t}.

If the branch is expanded using =T, we add a signed formula Sφ(t2), but Γ
contains both T t1 = t2 and Tφ(t1). Thus we have M ⊨ t1 = t2 and M ⊨ φ(t1).
Let s be a variable assignment with s(x) = ValM(t1). By Proposition 3.17,
M, s ⊨ φ(t1). Since s ∼x s, by Proposition 3.22, M, s ⊨ φ(x). since M ⊨ t1 =
t2, we have ValM(t1) = ValM(t2), and hence s(x) = ValM(t2). By applying
Proposition 3.22 again, we also have M, s ⊨ φ(t2). By Proposition 3.17, M ⊨
φ(t2). The case of =F is treated similarly.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 135

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 9

Axiomatic Derivations

No effort has been made yet to ensure that the material in this chap-
ter respects various tags indicating which connectives and quantifiers are
primitive or defined: all are assumed to be primitive, except ↔ which is
assumed to be defined. If the FOL tag is true, we produce a version with
quantifiers, otherwise without.

9.1 Rules and Derivations

fol:axd:rul:
sec

explanation Axiomatic derivations are perhaps the simplest derivation system for logic.
A derivation is just a sequence of formulas. To count as a derivation, every
formula in the sequence must either be an instance of an axiom, or must follow
from one or more formulas that precede it in the sequence by a rule of inference.
A derivation derives its last formula.

Definition 9.1 (Derivability). If Γ is a set of formulas of L then a derivation
from Γ is a finite sequence φ1, . . . , φn of formulas where for each i ≤ n one of
the following holds:

1. φi ∈ Γ ; or

2. φi is an axiom; or

3. φi follows from some φj (and φk) with j < i (and k < i) by a rule of
inference.

What counts as a correct derivation depends on which inference rules we
allow (and of course what we take to be axioms). And an inference rule is
an if-then statement that tells us that, under certain conditions, a step Ai in
a derivation is a correct inference step.

Definition 9.2 (Rule of inference). A rule of inference gives a sufficient
condition for what counts as a correct inference step in a derivation from Γ .

136

For instance, since any one-element sequence φ with φ ∈ Γ trivially counts
as a derivation, the following might be a very simple rule of inference:

If φ ∈ Γ , then φ is always a correct inference step in any derivation
from Γ .

Similarly, if φ is one of the axioms, then φ by itself is a derivation, and so this
is also a rule of inference:

If φ is an axiom, then φ is a correct inference step.

It gets more interesting if the rule of inference appeals to formulas that appear
before the step considered. The following rule is called modus ponens:

If ψ→φ and ψ occur higher up in the derivation, then φ is a correct
inference step.

If this is the only rule of inference, then our definition of derivation above
amounts to this: φ1, . . . , φn is a derivation iff for each i ≤ n one of the
following holds:

1. φi ∈ Γ ; or

2. φi is an axiom; or

3. for some j < i, φj is ψ→ φi, and for some k < i, φk is ψ.

The last clause says that φi follows from φj (ψ) and φk (ψ → φi) by modus
ponens. If we can go from 1 to n, and each time we find a formula φi that is
either in Γ , an axiom, or which a rule of inference tells us that it is a correct
inference step, then the entire sequence counts as a correct derivation.

Definition 9.3 (Derivability). A formula φ is derivable from Γ , written Γ ⊢
φ, if there is a derivation from Γ ending in φ.

Definition 9.4 (Theorems). A formula φ is a theorem if there is a derivation
of φ from the empty set. We write ⊢ φ if φ is a theorem and ⊬ φ if it is not.

9.2 Axiom and Rules for the Propositional Connectives

fol:axd:prp:
sec

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 137

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 9.5 (Axioms). The set of Ax0 of axioms for the propositional
connectives comprises all formulas of the following forms:

(φ ∧ ψ) → φ fol:axd:prp:

ax:land1

(9.1)

(φ ∧ ψ) → ψ fol:axd:prp:

ax:land2

(9.2)

φ→ (ψ→ (φ ∧ ψ)) fol:axd:prp:

ax:land3

(9.3)

φ→ (φ ∨ ψ) fol:axd:prp:

ax:lor1

(9.4)

φ→ (ψ ∨ φ) fol:axd:prp:

ax:lor2

(9.5)

(φ→ χ) → ((ψ→ χ) → ((φ ∨ ψ) → χ)) fol:axd:prp:

ax:lor3

(9.6)

φ→ (ψ→ φ) fol:axd:prp:

ax:lif1

(9.7)

(φ→ (ψ→ χ)) → ((φ→ ψ) → (φ→ χ)) fol:axd:prp:

ax:lif2

(9.8)

(φ→ ψ) → ((φ→¬ψ) →¬φ) fol:axd:prp:

ax:lnot1

(9.9)

¬φ→ (φ→ ψ) fol:axd:prp:

ax:lnot2

(9.10)

⊤ fol:axd:prp:

ax:ltrue

(9.11)

⊥→ φ fol:axd:prp:

ax:lfalse1

(9.12)

(φ→⊥) →¬φ fol:axd:prp:

ax:lfalse2

(9.13)

¬¬φ→ φ fol:axd:prp:

ax:dne

(9.14)

Definition 9.6 (Modus ponens). If ψ and ψ→φ already occur in a deriva-
tion, then φ is a correct inference step.

We’ll abbreviate the rule modus ponens as “mp.”

9.3 Axioms and Rules for Quantifiers

fol:axd:qua:
sec

Definition 9.7 (Axioms for quantifiers). The axioms governing quantifiers
are all instances of the following:

fol:axd:qua:

ax:q1

∀xψ→ ψ(t), (9.15)

fol:axd:qua:

ax:q2

ψ(t) →∃xψ. (9.16)

for any closed term t.

Definition 9.8 (Rules for quantifiers).

If ψ→ φ(a) already occurs in the derivation and a does not occur in Γ or ψ,
then ψ→∀xφ(x) is a correct inference step.

If φ(a) → ψ already occurs in the derivation and a does not occur in Γ or ψ,
then ∃xφ(x) → ψ is a correct inference step.

We’ll abbreviate either of these by “qr.”

138 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

9.4 Examples of Derivations

fol:axd:pro:
sec

Example 9.9. Suppose we want to prove (¬θ ∨ α) → (θ→ α). Clearly, this is
not an instance of any of our axioms, so we have to use the mp rule to derive
it. Our only rule is MP, which given φ and φ→ ψ allows us to justify ψ. One
strategy would be to use eq. (9.6) with φ being ¬θ, ψ being α, and χ being
θ→ α, i.e., the instance

(¬θ→ (θ→ α)) → ((α→ (θ→ α)) → ((¬θ ∨ α) → (θ→ α))).

Why? Two applications of MP yield the last part, which is what we want. And
we easily see that ¬θ→ (θ→ α) is an instance of eq. (9.10), and α→ (θ→ α)
is an instance of eq. (9.7). So our derivation is:

1. ¬θ→ (θ→ α) eq. (9.10)
2. (¬θ→ (θ→ α)) →

((α→ (θ→ α)) → ((¬θ ∨ α) → (θ→ α))) eq. (9.6)
3. ((α→ (θ→ α)) → ((¬θ ∨ α) → (θ→ α)) 1, 2, mp
4. α→ (θ→ α) eq. (9.7)
5. (¬θ ∨ α) → (θ→ α) 3, 4, mp

Example 9.10.fol:axd:pro:

ex:identity

Let’s try to find a derivation of θ→ θ. It is not an instance
of an axiom, so we have to use mp to derive it. eq. (9.7) is an axiom of the
form φ→ ψ to which we could apply mp. To be useful, of course, the ψ which
mp would justify as a correct step in this case would have to be θ→ θ, since
this is what we want to derive. That means φ would also have to be θ, i.e., we
might look at this instance of eq. (9.7):

θ→ (θ→ θ)

In order to apply mp, we would also need to justify the corresponding second
premise, namely φ. But in our case, that would be θ, and we won’t be able to
derive θ by itself. So we need a different strategy.

The other axiom involving just → is eq. (9.8), i.e.,

(φ→ (ψ→ χ)) → ((φ→ ψ) → (φ→ χ))

We could get to the last nested conditional by applying mp twice. Again, that
would mean that we want an instance of eq. (9.8) where φ→ χ is θ→ θ, the
formula we are aiming for. Then of course, φ and χ are both θ. How should
we pick ψ so that both φ→ (ψ→ χ) and φ→ ψ, i.e., in our case θ→ (ψ→ θ)
and θ→ψ, are also derivable? Well, the first of these is already an instance of
eq. (9.7), whatever we decide ψ to be. And θ→ ψ would be another instance
of eq. (9.7) if ψ were (θ→ θ). So, our derivation is:

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 139

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. θ→ ((θ→ θ) → θ) eq. (9.7)
2. (θ→ ((θ→ θ) → θ)) →

((θ→ (θ→ θ)) → (θ→ θ)) eq. (9.8)
3. (θ→ (θ→ θ)) → (θ→ θ) 1, 2, mp
4. θ→ (θ→ θ) eq. (9.7)
5. θ→ θ 3, 4, mp

Example 9.11. fol:axd:pro:

ex:chain

Sometimes we want to show that there is a derivation of
some formula from some other formulas Γ . For instance, let’s show that we
can derive φ→ χ from Γ = {φ→ ψ,ψ→ χ}.

1. φ→ ψ Hyp
2. ψ→ χ Hyp
3. (ψ→ χ) → (φ→ (ψ→ χ)) eq. (9.7)
4. φ→ (ψ→ χ) 2, 3, mp
5. (φ→ (ψ→ χ)) →

((φ→ ψ) → (φ→ χ)) eq. (9.8)
6. ((φ→ ψ) → (φ→ χ)) 4, 5, mp
7. φ→ χ 1, 6, mp

The lines labelled “Hyp” (for “hypothesis”) indicate that the formula on that
line is an element of Γ .

Proposition 9.12. fol:axd:pro:

prop:chain

If Γ ⊢ φ→ ψ and Γ ⊢ ψ→ χ, then Γ ⊢ φ→ χ

Proof. Suppose Γ ⊢ φ→ψ and Γ ⊢ ψ→χ. Then there is a derivation of φ→ψ
from Γ ; and a derivation of ψ→χ from Γ as well. Combine these into a single
derivation by concatenating them. Now add lines 3–7 of the derivation in the
preceding example. This is a derivation of φ→χ—which is the last line of the
new derivation—from Γ . Note that the justifications of lines 4 and 7 remain
valid if the reference to line number 2 is replaced by reference to the last line
of the derivation of φ→ ψ, and reference to line number 1 by reference to the
last line of the derivation of B→ χ.

Problem 9.1. Show that the following hold by exhibiting derivations from
the axioms:

1. (φ ∧ ψ) → (ψ ∧ φ)

2. ((φ ∧ ψ) → χ) → (φ→ (ψ→ χ))

3. ¬(φ ∨ ψ) →¬φ

9.5 Derivations with Quantifiers

fol:axd:prq:
sec

Example 9.13. Let us give a derivation of (∀xφ(x) ∧ ∀y ψ(y)) → ∀x (φ(x) ∧
ψ(x)).

140 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

First, note that

(∀xφ(x) ∧ ∀y ψ(y)) →∀xφ(x)

is an instance of eq. (9.1), and

∀xφ(x) → φ(a)

of eq. (9.15). So, by Proposition 9.12, we know that

(∀xφ(x) ∧ ∀y ψ(y)) → φ(a)

is derivable. Likewise, since

(∀xφ(x) ∧ ∀y ψ(y)) →∀y ψ(y) and

∀y ψ(y) → ψ(a)

are instances of eq. (9.2) and eq. (9.15), respectively,

(∀xφ(x) ∧ ∀y ψ(y)) → ψ(a)

is derivable by Proposition 9.12. Using an appropriate instance of eq. (9.3) and
two applications of mp, we see that

(∀xφ(x) ∧ ∀y ψ(y)) → (φ(a) ∧ ψ(a))

is derivable. We can now apply qr to obtain

(∀xφ(x) ∧ ∀y ψ(y)) →∀x (φ(x) ∧ ψ(x)).

9.6 Proof-Theoretic Notions

fol:axd:ptn:
sec

explanationJust as we’ve defined a number of important semantic notions (validity, en-
tailment, satisfiability), we now define corresponding proof-theoretic notions.
These are not defined by appeal to satisfaction of sentences in structures, but
by appeal to the derivability or non-derivability of certain formulas. It was an
important discovery that these notions coincide. That they do is the content
of the soundness and completeness theorems.

Definition 9.14 (Derivability). A formula φ is derivable from Γ , written
Γ ⊢ φ, if there is a derivation from Γ ending in φ.

Definition 9.15 (Theorems). A formula φ is a theorem if there is a deriva-
tion of φ from the empty set. We write ⊢ φ if φ is a theorem and ⊬ φ if it is
not.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 141

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 9.16 (Consistency). A set Γ of formulas is consistent if and only
if Γ ⊬ ⊥; it is inconsistent otherwise.

Proposition 9.17 (Reflexivity). fol:axd:ptn:

prop:reflexivity

If φ ∈ Γ , then Γ ⊢ φ.

Proof. The formula φ by itself is a derivation of φ from Γ .

Proposition 9.18 (Monotonicity). fol:axd:ptn:

prop:monotonicity

If Γ ⊆ ∆ and Γ ⊢ φ, then ∆ ⊢ φ.

Proof. Any derivation of φ from Γ is also a derivation of φ from ∆.

Proposition 9.19 (Transitivity). fol:axd:ptn:

prop:transitivity

If Γ ⊢ φ and {φ}∪∆ ⊢ ψ, then Γ ∪∆ ⊢
ψ.

Proof. Suppose {φ} ∪ ∆ ⊢ ψ. Then there is a derivation ψ1, . . . , ψl = ψ
from {φ} ∪∆. Some of the steps in that derivation will be correct because of
a rule which refers to a prior line ψi = φ. By hypothesis, there is a derivation
of φ from Γ , i.e., a derivation φ1, . . . , φk = φ where every φi is an axiom,
an element of Γ , or correct by a rule of inference. Now consider the sequence

φ1, . . . , φk = φ,ψ1, . . . , ψl = ψ.

This is a correct derivation of ψ from Γ ∪∆ since every Bi = φ is now justified
by the same rule which justifies φk = φ.

Note that this means that in particular if Γ ⊢ φ and φ ⊢ ψ, then Γ ⊢ ψ. It
follows also that if φ1, . . . , φn ⊢ ψ and Γ ⊢ φi for each i, then Γ ⊢ ψ.

Proposition 9.20. fol:axd:ptn:

prop:incons

Γ is inconsistent iff Γ ⊢ φ for every φ.

Proof. Exercise.

Problem 9.2. Prove Proposition 9.20.

Proposition 9.21 (Compactness). fol:axd:ptn:

prop:proves-compact

1. If Γ ⊢ φ then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊢ φ.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ⊢ φ, then there is a finite sequence of formulas φ1, . . . , φn
so that φ ≡ φn and each φi is either a logical axiom, an element of Γ or
follows from previous formulas by modus ponens. Take Γ0 to be those
φi which are in Γ . Then the derivation is likewise a derivation from Γ0,
and so Γ0 ⊢ φ.

2. This is the contrapositive of (1) for the special case φ ≡ ⊥.

142 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

9.7 The Deduction Theorem

fol:axd:ded:
sec

As we’ve seen, giving derivations in an axiomatic system is cumbersome, and
derivations may be hard to find. Rather than actually write out long lists of
formulas, it is generally easier to argue that such derivations exist, by mak-
ing use of a few simple results. We’ve already established three such results:
Proposition 9.17 says we can always assert that Γ ⊢ φ when we know that
φ ∈ Γ . Proposition 9.18 says that if Γ ⊢ φ then also Γ ∪ {ψ} ⊢ φ. And
Proposition 9.19 implies that if Γ ⊢ φ and φ ⊢ ψ, then Γ ⊢ ψ. Here’s another
simple result, a “meta”-version of modus ponens:

Proposition 9.22.fol:axd:ded:
prop:mp

If Γ ⊢ φ and Γ ⊢ φ→ ψ, then Γ ⊢ ψ.

Proof. We have that {φ,φ→ ψ} ⊢ ψ:

1. φ Hyp.
2. φ→ ψ Hyp.
3. ψ 1, 2, MP

By Proposition 9.19, Γ ⊢ ψ.

The most important result we’ll use in this context is the deduction theorem:

Theorem 9.23 (Deduction Theorem).fol:axd:ded:

thm:deduction-thm

Γ ∪ {φ} ⊢ ψ if and only if Γ ⊢
φ→ ψ.

Proof. The “if” direction is immediate. If Γ ⊢ φ→ ψ then also Γ ∪ {φ} ⊢
φ→ ψ by Proposition 9.18. Also, Γ ∪ {φ} ⊢ φ by Proposition 9.17. So, by
Proposition 9.22, Γ ∪ {φ} ⊢ ψ.

For the “only if” direction, we proceed by induction on the length of the
derivation of ψ from Γ ∪ {φ}.

For the induction basis, we prove the claim for every derivation of length 1.
A derivation of ψ from Γ ∪ {φ} of length 1 consists of ψ by itself; and if it is
correct ψ is either ∈ Γ ∪ {φ} or is an axiom. If ψ ∈ Γ or is an axiom, then
Γ ⊢ ψ. We also have that Γ ⊢ ψ→ (φ→ ψ) by eq. (9.7), and Proposition 9.22
gives Γ ⊢ φ→ψ. If ψ ∈ {φ} then Γ ⊢ φ→ψ because then last sentence φ→ψ
is the same as φ→ φ, and we have derived that in Example 9.10.

For the inductive step, suppose a derivation of ψ from Γ ∪ {φ} ends with
a step ψ which is justified by modus ponens. (If it is not justified by modus
ponens, ψ ∈ Γ , ψ ≡ φ, or ψ is an axiom, and the same reasoning as in the
induction basis applies.) Then some previous steps in the derivation are χ→ψ
and χ, for some formula χ, i.e., Γ ∪ {φ} ⊢ χ→ ψ and Γ ∪ {φ} ⊢ χ, and the
respective derivations are shorter, so the inductive hypothesis applies to them.
We thus have both:

Γ ⊢ φ→ (χ→ ψ);

Γ ⊢ φ→ χ.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 143

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

But also

Γ ⊢ (φ→ (χ→ ψ)) → ((φ→ χ) → (φ→ ψ)),

by eq. (9.8), and two applications of Proposition 9.22 give Γ ⊢ φ → ψ, as
required.

Notice how eq. (9.7) and eq. (9.8) were chosen precisely so that the Deduc-
tion Theorem would hold.

The following are some useful facts about derivability, which we leave as
exercises.

Proposition 9.24. fol:axd:ded:

prop:derivfacts

1. ⊢ (φ→ ψ) → ((ψ→ χ) → (φ→ χ); fol:axd:ded:

derivfacts:a

2. If Γ ∪ {¬φ} ⊢ ¬ψ then Γ ∪ {ψ} ⊢ φ (Contraposition); fol:axd:ded:

derivfacts:b

3. {φ,¬φ} ⊢ ψ (Ex Falso Quodlibet, Explosion); fol:axd:ded:

derivfacts:c

4. {¬¬φ} ⊢ φ (Double Negation Elimination); fol:axd:ded:

derivfacts:d

5. If Γ ⊢ ¬¬φ then Γ ⊢ φ; fol:axd:ded:

derivfacts:e

Problem 9.3. Prove Proposition 9.24

9.8 The Deduction Theorem with Quantifiers

fol:axd:ddq:
sec

Theorem 9.25 (Deduction Theorem). fol:axd:ddq:

thm:deduction-thm-q

If Γ ∪ {φ} ⊢ ψ, then Γ ⊢ φ→ ψ.

Proof. We again proceed by induction on the length of the derivation of ψ from
Γ ∪ {φ}.

The proof of the induction basis is identical to that in the proof of Theo-
rem 9.23.

For the inductive step, suppose again that the derivation of ψ from Γ ∪{φ}
ends with a step ψ which is justified by an inference rule. If the inference rule
is modus ponens, we proceed as in the proof of Theorem 9.23. If the inference
rule is qr, we know that ψ ≡ χ→∀x θ(x) and a formula of the form χ→ θ(a)
appears earlier in the derivation, where a does not occur in χ, φ, or Γ . We
thus have that

Γ ∪ {φ} ⊢ χ→ θ(a),

and the induction hypothesis applies, i.e., we have that

Γ ⊢ φ→ (χ→ θ(a)).

144 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

By

⊢ (φ→ (χ→ θ(a))) → ((φ ∧ χ) → θ(a))

and modus ponens we get

Γ ⊢ (φ ∧ χ) → θ(a).

Since the eigenvariable condition still applies, we can add a step to this deriva-
tion justified by qr, and get

Γ ⊢ (φ ∧ χ) →∀x θ(x).

We also have

⊢ ((φ ∧ χ) →∀x θ(x)) → (φ→ (χ→∀x θ(x)),

so by modus ponens,

Γ ⊢ φ→ (χ→∀x θ(x)),

i.e., Γ ⊢ ψ.
We leave the case where ψ is justified by the rule qr, but is of the form

∃x θ(x) → χ, as an exercise.

Problem 9.4. Complete the proof of Theorem 9.25.

9.9 Derivability and Consistency

fol:axd:prv:
sec

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 9.26.fol:axd:prv:

prop:provability-contr

If Γ ⊢ φ and Γ ∪ {φ} is inconsistent, then Γ is inconsis-
tent.

Proof. If Γ ∪{φ} is inconsistent, then Γ ∪{φ} ⊢ ⊥. By Proposition 9.17, Γ ⊢ ψ
for every ψ ∈ Γ . Since also Γ ⊢ φ by hypothesis, Γ ⊢ ψ for every ψ ∈ Γ ∪{φ}.
By Proposition 9.19, Γ ⊢ ⊥, i.e., Γ is inconsistent.

Proposition 9.27.fol:axd:prv:

prop:prov-incons

Γ ⊢ φ iff Γ ∪ {¬φ} is inconsistent.

Proof. First suppose Γ ⊢ φ. Then Γ ∪ {¬φ} ⊢ φ by Proposition 9.18. Γ ∪
{¬φ} ⊢ ¬φ by Proposition 9.17. We also have ⊢ ¬φ→ (φ→⊥) by eq. (9.10).
So by two applications of Proposition 9.22, we have Γ ∪ {¬φ} ⊢ ⊥.

Now assume Γ ∪{¬φ} is inconsistent, i.e., Γ ∪{¬φ} ⊢ ⊥. By the deduction
theorem, Γ ⊢ ¬φ → ⊥. Γ ⊢ (¬φ → ⊥) → ¬¬φ by eq. (9.13), so Γ ⊢ ¬¬φ
by Proposition 9.22. Since Γ ⊢ ¬¬φ → φ (eq. (9.14)), we have Γ ⊢ φ by
Proposition 9.22 again.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 145

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 9.5. Prove that Γ ⊢ ¬φ iff Γ ∪ {φ} is inconsistent.

Proposition 9.28. fol:axd:prv:

prop:explicit-inc

If Γ ⊢ φ and ¬φ ∈ Γ , then Γ is inconsistent.

Proof. Γ ⊢ ¬φ→ (φ→⊥) by eq. (9.10). Γ ⊢ ⊥ by two applications of Propo-
sition 9.22.

Proposition 9.29. fol:axd:prv:

prop:provability-exhaustive

If Γ ∪{φ} and Γ ∪{¬φ} are both inconsistent, then Γ is
inconsistent.

Proof. Exercise.

Problem 9.6. Prove Proposition 9.29

9.10 Derivability and the Propositional Connectives

fol:axd:ppr:
sec

explanation We establish that the derivability relation ⊢ of axiomatic deduction is strong
enough to establish some basic facts involving the propositional connectives,
such as that φ ∧ ψ ⊢ φ and φ,φ→ ψ ⊢ ψ (modus ponens). These facts are
needed for the proof of the completeness theorem.

Proposition 9.30. fol:axd:ppr:

prop:provability-land

1. fol:axd:ppr:

prop:provability-land-left

Both φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ

2. fol:axd:ppr:

prop:provability-land-right

φ,ψ ⊢ φ ∧ ψ.

Proof. 1. From eq. (9.1) and eq. (9.1) by modus ponens.

2. From eq. (9.3) by two applications of modus ponens.

Proposition 9.31. fol:axd:ppr:

prop:provability-lor

1. φ ∨ ψ,¬φ,¬ψ is inconsistent.

2. Both φ ⊢ φ ∨ ψ and ψ ⊢ φ ∨ ψ.

Proof. 1. From eq. (9.9) we get ⊢ ¬φ→(φ→⊥) and ⊢ ¬ψ→(ψ→⊥). So by
the deduction theorem, we have {¬φ} ⊢ φ→⊥ and {¬ψ} ⊢ ψ→⊥. From
eq. (9.6) we get {¬φ,¬ψ} ⊢ (φ ∨ ψ) → ⊥. By the deduction theorem,
{φ ∨ ψ,¬φ,¬ψ} ⊢ ⊥.

2. From eq. (9.4) and eq. (9.5) by modus ponsens.

Proposition 9.32. fol:axd:ppr:

prop:provability-lif

1. fol:axd:ppr:

prop:provability-lif-left

φ,φ→ ψ ⊢ ψ.

2. fol:axd:ppr:

prop:provability-lif-right

Both ¬φ ⊢ φ→ ψ and ψ ⊢ φ→ ψ.

146 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. 1. We can derive:

1. φ Hyp
2. φ→ ψ Hyp
3. ψ 1, 2, mp

2. By eq. (9.10) and eq. (9.7) and the deduction theorem, respectively.

9.11 Derivability and the Quantifiers

fol:axd:qpr:
sec

explanationThe completeness theorem also requires that axiomatic deductions yield the
facts about ⊢ established in this section.

Theorem 9.33.fol:axd:qpr:

thm:strong-generalization

If c is a constant symbol not occurring in Γ or φ(x) and
Γ ⊢ φ(c), then Γ ⊢ ∀xφ(x).

Proof. By the deduction theorem, Γ ⊢ ⊤→ φ(c). Since c does not occur in Γ
or ⊤, we get Γ ⊢ ⊤→ φ(c). By the deduction theorem again, Γ ⊢ ∀xφ(x).

Proposition 9.34.fol:axd:qpr:

prop:provability-quantifiers

1. φ(t) ⊢ ∃xφ(x).

2. ∀xφ(x) ⊢ φ(t).

Proof. 1. By eq. (9.16) and the deduction theorem.

2. By eq. (9.15) and the deduction theorem.

9.12 Soundness

fol:axd:sou:
sec

explanationA derivation system, such as axiomatic deduction, is sound if it cannot derive
things that do not actually hold. Soundness is thus a kind of guaranteed safety
property for derivation systems. Depending on which proof theoretic property
is in question, we would like to know for instance, that

1. every derivable φ is valid;

2. if φ is derivable from some others Γ , it is also a consequence of them;

3. if a set of formulas Γ is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do
not hold, the derivation system is deficient—it would derive too much. Con-
sequently, establishing the soundness of a derivation system is of the utmost
importance.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 147

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 9.35. If φ is an axiom, then M, s ⊨ φ for each structure M and
assignment s.

Proof. We have to verify that all the axioms are valid. For instance, here is the
case for eq. (9.15): suppose t is free for x in φ, and assume M, s ⊨ ∀xφ. Then
by definition of satisfaction, for each s′ ∼x s, also M, s′ ⊨ φ, and in particular
this holds when s′(x) = ValMs (t). By Proposition 3.22, M, s ⊨ φ[t/x]. This
shows that M, s ⊨ (∀xφ→ φ[t/x]).

Theorem 9.36 (Soundness). fol:axd:sou:

thm:soundness

If Γ ⊢ φ then Γ ⊨ φ.

Proof. By induction on the length of the derivation of φ from Γ . If there are
no steps justified by inferences, then all formulas in the derivation are either
instances of axioms or are in Γ . By the previous proposition, all the axioms are
valid, and hence if φ is an axiom then Γ ⊨ φ. If φ ∈ Γ , then trivially Γ ⊨ φ.

If the last step of the derivation of φ is justified by modus ponens, then
there are formulas ψ and ψ→φ in the derivation, and the induction hypothesis
applies to the part of the derivation ending in those formulas (since they contain
at least one fewer steps justified by an inference). So, by induction hypothesis,
Γ ⊨ ψ and Γ ⊨ ψ→ φ. Then Γ ⊨ φ by Theorem 3.29.

Now suppose the last step is justified by qr. Then that step has the form
χ→ ∀xB(x) and there is a preceding step χ→ ψ(c) with c not in Γ , χ, or
∀xB(x). By induction hypothesis, Γ ⊨ χ→ ∀xB(x). By Theorem 3.29, Γ ∪
{χ} ⊨ ψ(c).

Consider some structure M such that M ⊨ Γ ∪ {χ}. We need to show
that M ⊨ ∀xψ(x). Since ∀xψ(x) is a sentence, this means we have to show
that for every variable assignment s, M, s ⊨ ψ(x) (Proposition 3.18). Since
Γ ∪{χ} consists entirely of sentences, M, s ⊨ θ for all θ ∈ Γ by Definition 3.11.
Let M′ be like M except that cM

′
= s(x). Since c does not occur in Γ or χ,

M′ ⊨ Γ ∪ {χ} by Corollary 3.20. Since Γ ∪ {χ} ⊨ ψ(c), M′ ⊨ B(c). Since ψ(c)
is a sentence, M, s ⊨ ψ(c) by Proposition 3.17. M′, s ⊨ ψ(x) iff M′ ⊨ ψ(c) by
Proposition 3.22 (recall that ψ(c) is just ψ(x)[c/x]). So, M′, s ⊨ ψ(x). Since
c does not occur in ψ(x), by Proposition 3.19, M, s ⊨ ψ(x). But s was an
arbitrary variable assignment, so M ⊨ ∀xψ(x). Thus Γ ∪ {χ} ⊨ ∀xψ(x). By
Theorem 3.29, Γ ⊨ χ→∀xψ(x).

The case where φ is justified by qr but is of the form ∃xψ(x) → χ is left
as an exercise.

Problem 9.7. Complete the proof of Theorem 9.36.

Corollary 9.37. fol:axd:sou:

cor:weak-soundness

If ⊢ φ, then φ is valid.

Corollary 9.38. fol:axd:sou:

cor:consistency-soundness

If Γ is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then
Γ ⊢ ⊥, i.e., there is a derivation of ⊥ from Γ . By Theorem 9.36, any struc-
ture M that satisfies Γ must satisfy ⊥. Since M ⊭ ⊥ for every structure M,
no M can satisfy Γ , i.e., Γ is not satisfiable.

148 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

9.13 Derivations with Identity predicate

fol:axd:ide:
sec

In order to accommodate = in derivations, we simply add new axiom schemas.
The definition of derivation and ⊢ remains the same, we just also allow the
new axioms.

Definition 9.39 (Axioms for identity predicate).

fol:axd:ide:

ax:id1

t = t, (9.17)

fol:axd:ide:

ax:id2

t1 = t2 → (ψ(t1) → ψ(t2)), (9.18)

for any closed terms t, t1, t2.

Proposition 9.40.fol:axd:ide:

prop:sound

The axioms eq. (9.17) and eq. (9.18) are valid.

Proof. Exercise.

Problem 9.8. Prove Proposition 9.40.

Proposition 9.41.fol:axd:ide:

prop:iden1

Γ ⊢ t = t, for any term t and set Γ .

Proposition 9.42.fol:axd:ide:

prop:iden2

If Γ ⊢ φ(t1) and Γ ⊢ t1 = t2, then Γ ⊢ φ(t2).

Proof. The formula
(t1 = t2 → (φ(t1) → φ(t2)))

is an instance of eq. (9.18). The conclusion follows by two applications of mp.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 149

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 10

The Completeness Theorem

10.1 Introduction

fol:com:int:
sec

The completeness theorem is one of the most fundamental results about logic.
It comes in two formulations, the equivalence of which we’ll prove. In its
first formulation it says something fundamental about the relationship between
semantic consequence and our derivation system: if a sentence φ follows from
some sentences Γ , then there is also a derivation that establishes Γ ⊢ φ. Thus,
the derivation system is as strong as it can possibly be without proving things
that don’t actually follow.

In its second formulation, it can be stated as a model existence result: every
consistent set of sentences is satisfiable. Consistency is a proof-theoretic notion:
it says that our derivation system is unable to produce certain derivations. But
who’s to say that just because there are no derivations of a certain sort from Γ ,
it’s guaranteed that there is a structure M? Before the completeness theorem
was first proved—in fact before we had the derivation systems we now do—the
great German mathematician David Hilbert held the view that consistency of
mathematical theories guarantees the existence of the objects they are about.
He put it as follows in a letter to Gottlob Frege:

If the arbitrarily given axioms do not contradict one another with
all their consequences, then they are true and the things defined by
the axioms exist. This is for me the criterion of truth and existence.

Frege vehemently disagreed. The second formulation of the completeness the-
orem shows that Hilbert was right in at least the sense that if the axioms are
consistent, then some structure exists that makes them all true.

These aren’t the only reasons the completeness theorem—or rather, its
proof—is important. It has a number of important consequences, some of
which we’ll discuss separately. For instance, since any derivation that shows
Γ ⊢ φ is finite and so can only use finitely many of the sentences in Γ , it follows
by the completeness theorem that if φ is a consequence of Γ , it is already a

150

consequence of a finite subset of Γ . This is called compactness. Equivalently,
if every finite subset of Γ is consistent, then Γ itself must be consistent.

Although the compactness theorem follows from the completeness theorem
via the detour through derivations, it is also possible to use the the proof of the
completeness theorem to establish it directly. For what the proof does is take a
set of sentences with a certain property—consistency—and constructs a struc-
ture out of this set that has certain properties (in this case, that it satisfies
the set). Almost the very same construction can be used to directly establish
compactness, by starting from “finitely satisfiable” sets of sentences instead
of consistent ones. The construction also yields other consequences, e.g., that
any satisfiable set of sentences has a finite or denumerable model. (This re-
sult is called the Löwenheim-Skolem theorem.) In general, the construction of
structures from sets of sentences is used often in logic, and sometimes even in
philosophy.

10.2 Outline of the Proof

fol:com:out:
sec

The proof of the completeness theorem is a bit complex, and upon first reading
it, it is easy to get lost. So let us outline the proof. The first step is a shift
of perspective, that allows us to see a route to a proof. When completeness
is thought of as “whenever Γ ⊨ φ then Γ ⊢ φ,” it may be hard to even come
up with an idea: for to show that Γ ⊢ φ we have to find a derivation, and
it does not look like the hypothesis that Γ ⊨ φ helps us for this in any way.
For some proof systems it is possible to directly construct a derivation, but we
will take a slightly different approach. The shift in perspective required is this:
completeness can also be formulated as: “if Γ is consistent, it is satisfiable.”
Perhaps we can use the information in Γ together with the hypothesis that it is
consistent to construct a structure that satisfies every sentence in Γ . After all,
we know what kind of structure we are looking for: one that is as Γ describes
it!

If Γ contains only atomic sentences, it is easy to construct a model for it.
Suppose the atomic sentences are all of the form P (a1, . . . , an) where the ai
are constant symbols. All we have to do is come up with a domain |M| and
an assignment for P so that M ⊨ P (a1, . . . , an). But that’s not very hard: put
|M| = N, cMi = i, and for every P (a1, . . . , an) ∈ Γ , put the tuple ⟨k1, . . . , kn⟩
into PM, where ki is the index of the constant symbol ai (i.e., ai ≡ cki).

Now suppose Γ contains some formula ¬ψ, with ψ atomic. We might worry
that the construction of M interferes with the possibility of making ¬ψ true.
But here’s where the consistency of Γ comes in: if ¬ψ ∈ Γ , then ψ /∈ Γ , or else
Γ would be inconsistent. And if ψ /∈ Γ , then according to our construction
of M, M ⊭ ψ, so M ⊨ ¬ψ. So far so good.

What if Γ contains complex, non-atomic formulas? Say it contains φ ∧ ψ.
To make that true, we should proceed as if both φ and ψ were in Γ . And if
φ ∨ ψ ∈ Γ , then we will have to make at least one of them true, i.e., proceed
as if one of them was in Γ .

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 151

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

This suggests the following idea: we add additional formulas to Γ so as to
(a) keep the resulting set consistent and (b) make sure that for every possible
atomic sentence φ, either φ is in the resulting set, or ¬φ is, and (c) such that,
whenever φ∧ψ is in the set, so are both φ and ψ, if φ∨ψ is in the set, at least
one of φ or ψ is also, etc. We keep doing this (potentially forever). Call the
set of all formulas so added Γ ∗. Then our construction above would provide
us with a structure M for which we could prove, by induction, that it satisfies
all sentences in Γ ∗, and hence also all sentence in Γ since Γ ⊆ Γ ∗. It turns
out that guaranteeing (a) and (b) is enough. A set of sentences for which (b)
holds is called complete. So our task will be to extend the consistent set Γ to
a consistent and complete set Γ ∗.

There is one wrinkle in this plan: if ∃xφ(x) ∈ Γ we would hope to be able
to pick some constant symbol c and add φ(c) in this process. But how do we
know we can always do that? Perhaps we only have a few constant symbols
in our language, and for each one of them we have ¬φ(c) ∈ Γ . We can’t also
add φ(c), since this would make the set inconsistent, and we wouldn’t know
whether M has to make φ(c) or ¬φ(c) true. Moreover, it might happen that
Γ contains only sentences in a language that has no constant symbols at all
(e.g., the language of set theory).

The solution to this problem is to simply add infinitely many constants at
the beginning, plus sentences that connect them with the quantifiers in the right
way. (Of course, we have to verify that this cannot introduce an inconsistency.)

Our original construction works well if we only have constant symbols in the
atomic sentences. But the language might also contain function symbols. In
that case, it might be tricky to find the right functions on N to assign to these
function symbols to make everything work. So here’s another trick: instead of
using i to interpret ci, just take the set of constant symbols itself as the domain.
Then M can assign every constant symbol to itself: cMi = ci. But why not go
all the way: let |M| be all terms of the language! If we do this, there is an
obvious assignment of functions (that take terms as arguments and have terms
as values) to function symbols: we assign to the function symbol f ni the function
which, given n terms t1, . . . , tn as input, produces the term f ni (t1, . . . , tn) as
value.

The last piece of the puzzle is what to do with =. The predicate symbol =
has a fixed interpretation: M ⊨ t = t′ iff ValM(t) = ValM(t′). Now if we set
things up so that the value of a term t is t itself, then this structure will make
no sentence of the form t = t′ true unless t and t′ are one and the same term.
And of course this is a problem, since basically every interesting theory in a
language with function symbols will have as theorems sentences t = t′ where t
and t′ are not the same term (e.g., in theories of arithmetic: (0+ 0) = 0). To
solve this problem, we change the domain of M: instead of using terms as the
objects in |M|, we use sets of terms, and each set is so that it contains all those
terms which the sentences in Γ require to be equal. So, e.g., if Γ is a theory of
arithmetic, one of these sets will contain: 0, (0+ 0), (0× 0), etc. This will be
the set we assign to 0, and it will turn out that this set is also the value of all
the terms in it, e.g., also of (0 + 0). Therefore, the sentence (0 + 0) = 0 will

152 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

be true in this revised structure.
So here’s what we’ll do. First we investigate the properties of complete

consistent sets, in particular we prove that a complete consistent set contains
φ ∧ ψ iff it contains both φ and ψ, φ ∨ ψ iff it contains at least one of them,
etc. (Proposition 10.2). Then we define and investigate “saturated” sets of
sentences. A saturated set is one which contains conditionals that link each
quantified sentence to instances of it (Definition 10.5). We show that any
consistent set Γ can always be extended to a saturated set Γ ′ (Lemma 10.6).
If a set is consistent, saturated, and complete it also has the property that
it contains ∃xφ(x) iff it contains φ(t) for some closed term t and ∀xφ(x) iff
it contains φ(t) for all closed terms t (Proposition 10.7). We’ll then take the
saturated consistent set Γ ′ and show that it can be extended to a saturated,
consistent, and complete set Γ ∗ (Lemma 10.8). This set Γ ∗ is what we’ll
use to define our term model M(Γ ∗). The term model has the set of closed
terms as its domain, and the interpretation of its predicate symbols is given
by the atomic sentences in Γ ∗ (Definition 10.9). We’ll use the properties of
saturated, complete consistent sets to show that indeed M(Γ ∗) ⊨ φ iff φ ∈ Γ ∗

(Lemma 10.12), and thus in particular, M(Γ ∗) ⊨ Γ . Finally, we’ll consider
how to define a term model if Γ contains = as well (Definition 10.16) and show
that it satisfies Γ ∗ (Lemma 10.19).

10.3 Complete Consistent Sets of Sentences

fol:com:ccs:
sec Definition 10.1 (Complete set).fol:com:ccs:

def:complete-set

A set Γ of sentences is complete iff for
any sentence φ, either φ ∈ Γ or ¬φ ∈ Γ .

explanationComplete sets of sentences leave no questions unanswered. For any sen-
tence φ, Γ “says” if φ is true or false. The importance of complete sets extends
beyond the proof of the completeness theorem. A theory which is complete and
axiomatizable, for instance, is always decidable.

explanationComplete consistent sets are important in the completeness proof since we
can guarantee that every consistent set of sentences Γ is contained in a complete
consistent set Γ ∗. A complete consistent set contains, for each sentence φ,
either φ or its negation ¬φ, but not both. This is true in particular for atomic
sentences, so from a complete consistent set in a language suitably expanded
by constant symbols, we can construct a structure where the interpretation of
predicate symbols is defined according to which atomic sentences are in Γ ∗.
This structure can then be shown to make all sentences in Γ ∗ (and hence also
all those in Γ) true. The proof of this latter fact requires that ¬φ ∈ Γ ∗ iff
φ /∈ Γ ∗, (φ ∨ ψ) ∈ Γ ∗ iff φ ∈ Γ ∗ or ψ ∈ Γ ∗, etc.

In what follows, we will often tacitly use the properties of reflexivity, mono-
tonicity, and transitivity of ⊢ (see sections 6.8, 7.7, 8.7 and 9.6).

Proposition 10.2.fol:com:ccs:
prop:ccs

Suppose Γ is complete and consistent. Then:

1.fol:com:ccs:

prop:ccs-prov-in

If Γ ⊢ φ, then φ ∈ Γ .

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 153

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. fol:com:ccs:

prop:ccs-and

φ ∧ ψ ∈ Γ iff both φ ∈ Γ and ψ ∈ Γ .

3. fol:com:ccs:
prop:ccs-or

φ ∨ ψ ∈ Γ iff either φ ∈ Γ or ψ ∈ Γ .

4. fol:com:ccs:

prop:ccs-if

φ→ ψ ∈ Γ iff either φ /∈ Γ or ψ ∈ Γ .

Proof. Let us suppose for all of the following that Γ is complete and consistent.

1. If Γ ⊢ φ, then φ ∈ Γ .

Suppose that Γ ⊢ φ. Suppose to the contrary that φ /∈ Γ . Since Γ is
complete, ¬φ ∈ Γ . By Propositions 6.20, 7.20, 8.20 and 9.28, Γ is incon-
sistent. This contradicts the assumption that Γ is consistent. Hence, it
cannot be the case that φ /∈ Γ , so φ ∈ Γ .

2. φ ∧ ψ ∈ Γ iff both φ ∈ Γ and ψ ∈ Γ :

For the forward direction, suppose φ∧ψ ∈ Γ . Then by Propositions 6.22,
7.22, 8.22 and 9.30, item (1), Γ ⊢ φ and Γ ⊢ ψ. By (1), φ ∈ Γ and ψ ∈ Γ ,
as required.

For the reverse direction, let φ ∈ Γ and ψ ∈ Γ . By Propositions 6.22,
7.22, 8.22 and 9.30, item (2), Γ ⊢ φ ∧ ψ. By (1), φ ∧ ψ ∈ Γ .

3. First we show that if φ ∨ ψ ∈ Γ , then either φ ∈ Γ or ψ ∈ Γ . Suppose
φ ∨ ψ ∈ Γ but φ /∈ Γ and ψ /∈ Γ . Since Γ is complete, ¬φ ∈ Γ
and ¬ψ ∈ Γ . By Propositions 6.23, 7.23, 8.23 and 9.31, item (1), Γ is
inconsistent, a contradiction. Hence, either φ ∈ Γ or ψ ∈ Γ .

For the reverse direction, suppose that φ ∈ Γ or ψ ∈ Γ . By Proposi-
tions 6.23, 7.23, 8.23 and 9.31, item (2), Γ ⊢ φ ∨ ψ. By (1), φ ∨ ψ ∈ Γ ,
as required.

4. For the forward direction, suppose φ→ψ ∈ Γ , and suppose to the contrary
that φ ∈ Γ and ψ /∈ Γ . On these assumptions, φ→ ψ ∈ Γ and φ ∈ Γ .
By Propositions 6.24, 7.24, 8.24 and 9.32, item (1), Γ ⊢ ψ. But then by
(1), ψ ∈ Γ , contradicting the assumption that ψ /∈ Γ .

For the reverse direction, first consider the case where φ /∈ Γ . Since Γ is
complete, ¬φ ∈ Γ . By Propositions 6.24, 7.24, 8.24 and 9.32, item (2),
Γ ⊢ φ→ ψ. Again by (1), we get that φ→ ψ ∈ Γ , as required.

Now consider the case where ψ ∈ Γ . By Propositions 6.24, 7.24, 8.24
and 9.32, item (2) again, Γ ⊢ φ→ ψ. By (1), φ→ ψ ∈ Γ .

Problem 10.1. Complete the proof of Proposition 10.2.

154 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

10.4 Henkin Expansion

fol:com:hen:
sec

explanationPart of the challenge in proving the completeness theorem is that the model
we construct from a complete consistent set Γ must make all the quantified
formulas in Γ true. In order to guarantee this, we use a trick due to Leon
Henkin. In essence, the trick consists in expanding the language by infinitely
many constant symbols and adding, for each formula with one free variable
φ(x) a formula of the form ∃xφ(x)→φ(c), where c is one of the new constant
symbols. When we construct the structure satisfying Γ , this will guarantee
that each true existential sentence has a witness among the new constants.

Proposition 10.3.fol:com:hen:

prop:lang-exp

If Γ is consistent in L and L′ is obtained from L by adding
a denumerable set of new constant symbols d0, d1, . . . , then Γ is consistent
in L′.

Definition 10.4 (Saturated set). A set Γ of formulas of a language L is
saturated iff for each formula φ(x) ∈ Frm(L) with one free variable x there is
a constant symbol c ∈ L such that ∃xφ(x) → φ(c) ∈ Γ .

The following definition will be used in the proof of the next theorem.

Definition 10.5.fol:com:hen:

defn:henkin-exp

Let L′ be as in Proposition 10.3. Fix an enumeration
φ0(x0), φ1(x1), . . . of all formulas φi(xi) of L′ in which one variable (xi) occurs
free. We define the sentences θn by induction on n.

Let c0 be the first constant symbol among the di we added to L which does
not occur in φ0(x0). Assuming that θ0, . . . , θn−1 have already been defined,
let cn be the first among the new constant symbols di that occurs neither in
θ0, . . . , θn−1 nor in φn(xn).

Now let θn be the formula ∃xn φn(xn) → φn(cn).

Lemma 10.6.fol:com:hen:

lem:henkin

Every consistent set Γ can be extended to a saturated consis-
tent set Γ ′.

Proof. Given a consistent set of sentences Γ in a language L, expand the lan-
guage by adding a denumerable set of new constant symbols to form L′. By
Proposition 10.3, Γ is still consistent in the richer language. Further, let θi be
as in Definition 10.5. Let

Γ0 = Γ

Γn+1 = Γn ∪ {θn}

i.e., Γn+1 = Γ ∪ {θ0, . . . , θn}, and let Γ ′ =
⋃
n Γn. Γ ′ is clearly saturated.

If Γ ′ were inconsistent, then for some n, Γn would be inconsistent (Exercise:
explain why). So to show that Γ ′ is consistent it suffices to show, by induction
on n, that each set Γn is consistent.

The induction basis is simply the claim that Γ0 = Γ is consistent, which
is the hypothesis of the theorem. For the induction step, suppose that Γn is

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 155

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

consistent but Γn+1 = Γn∪{θn} is inconsistent. Recall that θn is ∃xn φn(xn)→
φn(cn), where φn(xn) is a formula of L′ with only the variable xn free. By the
way we’ve chosen the cn (see Definition 10.5), cn does not occur in φn(xn) nor
in Γn.

If Γn ∪{θn} is inconsistent, then Γn ⊢ ¬θn, and hence both of the following
hold:

Γn ⊢ ∃xn φn(xn) Γn ⊢ ¬φn(cn)

Since cn does not occur in Γn or in φn(xn), Theorems 6.25, 7.25, 8.25 and 9.33
applies. From Γn ⊢ ¬φn(cn), we obtain Γn ⊢ ∀xn ¬φn(xn). Thus we have
that both Γn ⊢ ∃xn φn(xn) and Γn ⊢ ∀xn ¬φn(xn), so Γn itself is inconsistent.
(Note that ∀xn ¬φn(xn) ⊢ ¬∃xn φn(xn).) Contradiction: Γn was supposed to
be consistent. Hence Γn ∪ {θn} is consistent.

explanation We’ll now show that complete, consistent sets which are saturated have the
property that it contains a universally quantified sentence iff it contains all its
instances and it contains an existentially quantified sentence iff it contains at
least one instance. We’ll use this to show that the structure we’ll generate from
a complete, consistent, saturated set makes all its quantified sentences true.

Proposition 10.7. fol:com:hen:

prop:saturated-instances

Suppose Γ is complete, consistent, and saturated.

1. ∃xφ(x) ∈ Γ iff φ(t) ∈ Γ for at least one closed term t.

2. ∀xφ(x) ∈ Γ iff φ(t) ∈ Γ for all closed terms t.

Proof. 1. First suppose that ∃xφ(x) ∈ Γ . Because Γ is saturated, (∃xφ(x)→
φ(c)) ∈ Γ for some constant symbol c. By Propositions 6.24, 7.24, 8.24
and 9.32, item (1), and Proposition 10.2(1), φ(c) ∈ Γ .

For the other direction, saturation is not necessary: Suppose φ(t) ∈ Γ .
Then Γ ⊢ ∃xφ(x) by Propositions 6.26, 7.26, 8.26 and 9.34, item (1). By
Proposition 10.2(1), ∃xφ(x) ∈ Γ .

2. Suppose that φ(t) ∈ Γ for all closed terms t. By way of contradiction,
assume ∀xφ(x) /∈ Γ . Since Γ is complete, ¬∀xφ(x) ∈ Γ . By saturation,
(∃x¬φ(x) → ¬φ(c)) ∈ Γ for some constant symbol c. By assumption,
since c is a closed term, φ(c) ∈ Γ . But this would make Γ inconsistent.
(Exercise: give the derivation that shows

¬∀xφ(x),∃x¬φ(x) →¬φ(c), φ(c)

is inconsistent.)

For the reverse direction, we do not need saturation: Suppose ∀xφ(x) ∈
Γ . Then Γ ⊢ φ(t) by Propositions 6.26, 7.26, 8.26 and 9.34, item (2).
We get φ(t) ∈ Γ by Proposition 10.2.

156 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

10.5 Lindenbaum’s Lemma

fol:com:lin:
sec

explanationWe now prove a lemma that shows that any consistent set of sentences is con-
tained in some set of sentences which is not just consistent, but also complete.
The proof works by adding one sentence at a time, guaranteeing at each step
that the set remains consistent. We do this so that for every φ, either φ or ¬φ
gets added at some stage. The union of all stages in that construction then
contains either φ or its negation ¬φ and is thus complete. It is also consistent,
since we made sure at each stage not to introduce an inconsistency.

Lemma 10.8 (Lindenbaum’s Lemma).fol:com:lin:

lem:lindenbaum

Every consistent set Γ in a lan-
guage L can be extended to a complete and consistent set Γ ∗.

Proof. Let Γ be consistent. Let φ0, φ1, . . . be an enumeration of all the
sentences of L. Define Γ0 = Γ , and

Γn+1 =

{
Γn ∪ {φn} if Γn ∪ {φn} is consistent;

Γn ∪ {¬φn} otherwise.

Let Γ ∗ =
⋃
n≥0 Γn.

Each Γn is consistent: Γ0 is consistent by definition. If Γn+1 = Γn ∪ {φn},
this is because the latter is consistent. If it isn’t, Γn+1 = Γn∪{¬φn}. We have
to verify that Γn ∪{¬φn} is consistent. Suppose it’s not. Then both Γn ∪{φn}
and Γn∪{¬φn} are inconsistent. This means that Γn would be inconsistent by
Propositions 6.21, 7.21, 8.21 and 9.29, contrary to the induction hypothesis.

For every n and every i < n, Γi ⊆ Γn. This follows by a simple induction
on n. For n = 0, there are no i < 0, so the claim holds automatically. For
the inductive step, suppose it is true for n. We have Γn+1 = Γn ∪ {φn} or
= Γn ∪ {¬φn} by construction. So Γn ⊆ Γn+1. If i < n, then Γi ⊆ Γn by
inductive hypothesis, and so ⊆ Γn+1 by transitivity of ⊆.

From this it follows that every finite subset of Γ ∗ is a subset of Γn for
some n, since each ψ ∈ Γ ∗ not already in Γ0 is added at some stage i. If n
is the last one of these, then all ψ in the finite subset are in Γn. So, every
finite subset of Γ ∗ is consistent. By Propositions 6.17, 7.17, 8.17 and 9.21, Γ ∗

is consistent.
Every sentence of Frm(L) appears on the list used to define Γ ∗. If φn /∈ Γ ∗,

then that is because Γn ∪ {φn} was inconsistent. But then ¬φn ∈ Γ ∗, so Γ ∗ is
complete.

10.6 Construction of a Model

fol:com:mod:
sec

explanationRight now we are not concerned about =, i.e., we only want to show that a
consistent set Γ of sentences not containing = is satisfiable. We first extend Γ
to a consistent, complete, and saturated set Γ ∗. In this case, the definition of
a model M(Γ ∗) is simple: We take the set of closed terms of L′ as the domain.
We assign every constant symbol to itself, and make sure that more generally,

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 157

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

for every closed term t, ValM(Γ∗)(t) = t. The predicate symbols are assigned
extensions in such a way that an atomic sentence is true in M(Γ ∗) iff it is
in Γ ∗. This will obviously make all the atomic sentences in Γ ∗ true in M(Γ ∗).
The rest are true provided the Γ ∗ we start with is consistent, complete, and
saturated.

Definition 10.9 (Term model). fol:com:mod:

defn:termmodel

Let Γ ∗ be a complete and consistent, sat-
urated set of sentences in a language L. The term model M(Γ ∗) of Γ ∗ is the
structure defined as follows:

1. The domain |M(Γ ∗)| is the set of all closed terms of L.

2. The interpretation of a constant symbol c is c itself: cM(Γ∗) = c.

3. The function symbol f is assigned the function which, given as arguments
the closed terms t1, . . . , tn, has as value the closed term f(t1, . . . , tn):

fM(Γ∗)(t1, . . . , tn) = f(t1, . . . , tn)

4. If R is an n-place predicate symbol, then

⟨t1, . . . , tn⟩ ∈ RM(Γ∗) iff R(t1, . . . , tn) ∈ Γ ∗.

We will now check that we indeed have ValM(Γ∗)(t) = t.

Lemma 10.10. fol:com:mod:

lem:val-in-termmodel

Let M(Γ ∗) be the term model of Definition 10.9, then ValM(Γ∗)(t) =
t.

Proof. The proof is by induction on t, where the base case, when t is a con-
stant symbol, follows directly from the definition of the term model. For the
induction step assume t1, . . . , tn are closed terms such that ValM(Γ∗)(ti) = ti
and that f is an n-ary function symbol. Then

ValM(Γ∗)(f(t1, . . . , tn)) = fM(Γ∗)(ValM(Γ∗)(t1), . . . ,ValM(Γ∗)(tn))

= fM(Γ∗)(t1, . . . , tn)

= f(t1, . . . , tn),

and so by induction this holds for every closed term t.

explanation A structure M may make an existentially quantified sentence ∃xφ(x) true
without there being an instance φ(t) that it makes true. A structure M may
make all instances φ(t) of a universally quantified sentence ∀xφ(x) true, with-
out making ∀xφ(x) true. This is because in general not every element of |M|
is the value of a closed term (M may not be covered). This is the reason the
satisfaction relation is defined via variable assignments. However, for our term
model M(Γ ∗) this wouldn’t be necessary—because it is covered. This is the
content of the next result.

158 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 10.11.fol:com:mod:

prop:quant-termmodel

Let M(Γ ∗) be the term model of Definition 10.9.

1. M(Γ ∗) ⊨ ∃xφ(x) iff M(Γ ∗) ⊨ φ(t) for at least one term t.

2. M(Γ ∗) ⊨ ∀xφ(x) iff M(Γ ∗) ⊨ φ(t) for all terms t.

Proof. 1. By Proposition 3.18, M(Γ ∗) ⊨ ∃xφ(x) iff for at least one variable
assignment s, M(Γ ∗), s ⊨ φ(x). As |M(Γ ∗)| consists of the closed terms
of L, this is the case iff there is at least one closed term t such that
s(x) = t and M(Γ ∗), s ⊨ φ(x). By Proposition 3.22, M(Γ ∗), s ⊨ φ(x) iff
M(Γ ∗), s ⊨ φ(t), where s(x) = t. By Proposition 3.17, M(Γ ∗), s ⊨ φ(t)
iff M(Γ ∗) ⊨ φ(t), since φ(t) is a sentence.

2. By Proposition 3.18, M(Γ ∗) ⊨ ∀xφ(x) iff for every variable assignment
s, M(Γ ∗), s ⊨ φ(x). Recall that |M(Γ ∗)| consists of the closed terms
of L, so for every closed term t, s(x) = t is such a variable assignment,
and for any variable assignment, s(x) is some closed term t. By Propo-
sition 3.22, M(Γ ∗), s ⊨ φ(x) iff M(Γ ∗), s ⊨ φ(t), where s(x) = t. By
Proposition 3.17, M(Γ ∗), s ⊨ φ(t) iff M(Γ ∗) ⊨ φ(t), since φ(t) is a sen-
tence.

Lemma 10.12 (Truth Lemma).fol:com:mod:

lem:truth

Suppose φ does not contain =. Then M(Γ ∗) ⊨
φ iff φ ∈ Γ ∗.

Proof. We prove both directions simultaneously, and by induction on φ.

1. φ ≡ ⊥: M(Γ ∗) ⊭ ⊥ by definition of satisfaction. On the other hand,
⊥ /∈ Γ ∗ since Γ ∗ is consistent.

2. φ ≡ ⊤: M(Γ ∗) ⊨ ⊤ by definition of satisfaction. On the other hand,
⊤ ∈ Γ ∗ since Γ ∗ is consistent and complete, and Γ ∗ ⊢ ⊤.

3. φ ≡ R(t1, . . . , tn): M(Γ ∗) ⊨ R(t1, . . . , tn) iff ⟨t1, . . . , tn⟩ ∈ RM(Γ∗) (by
the definition of satisfaction) iff R(t1, . . . , tn) ∈ Γ ∗ (by the construction
of M(Γ ∗)).

4. φ ≡ ¬ψ: M(Γ ∗) ⊨ φ iff M(Γ ∗) ⊭ ψ (by definition of satisfaction). By
induction hypothesis, M(Γ ∗) ⊭ ψ iff ψ /∈ Γ ∗. Since Γ ∗ is consistent and
complete, ψ /∈ Γ ∗ iff ¬ψ ∈ Γ ∗.

5. φ ≡ ψ ∧χ: M(Γ ∗) ⊨ φ iff we have both M(Γ ∗) ⊨ ψ and M(Γ ∗) ⊨ χ (by
definition of satisfaction) iff both ψ ∈ Γ ∗ and χ ∈ Γ ∗ (by the induction
hypothesis). By Proposition 10.2(2), this is the case iff (ψ ∧ χ) ∈ Γ ∗.

6. φ ≡ ψ ∨ χ: M(Γ ∗) ⊨ φ iff M(Γ ∗) ⊨ ψ or M(Γ ∗) ⊨ χ (by definition of
satisfaction) iff ψ ∈ Γ ∗ or χ ∈ Γ ∗ (by induction hypothesis). This is the
case iff (ψ ∨ χ) ∈ Γ ∗ (by Proposition 10.2(3)).

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 159

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

7. φ ≡ ψ→ χ: M(Γ ∗) ⊨ φ iff M(Γ ∗) ⊭ ψ or M(Γ ∗) ⊨ χ (by definition of
satisfaction) iff ψ /∈ Γ ∗ or χ ∈ Γ ∗ (by induction hypothesis). This is the
case iff (ψ→ χ) ∈ Γ ∗ (by Proposition 10.2(4)).

8. φ ≡ ∀xψ(x): M(Γ ∗) ⊨ φ iff M(Γ ∗) ⊨ ψ(t) for all terms t (Proposi-
tion 10.11). By induction hypothesis, this is the case iff ψ(t) ∈ Γ ∗ for all
terms t, by Proposition 10.7, this in turn is the case iff ∀xφ(x) ∈ Γ ∗.

9. φ ≡ ∃xψ(x): M(Γ ∗) ⊨ φ iff M(Γ ∗) ⊨ ψ(t) for at least one term t
(Proposition 10.11). By induction hypothesis, this is the case iff ψ(t) ∈
Γ ∗ for at least one term t. By Proposition 10.7, this in turn is the case
iff ∃xψ(x) ∈ Γ ∗.

10.7 Identity

fol:com:ide:
sec

explanation The construction of the term model given in the preceding section is enough
to establish completeness for first-order logic for sets Γ that do not contain =.
The term model satisfies every φ ∈ Γ ∗ which does not contain = (and hence
all φ ∈ Γ). It does not work, however, if = is present. The reason is that Γ ∗

then may contain a sentence t = t′, but in the term model the value of any
term is that term itself. Hence, if t and t′ are different terms, their values in
the term model—i.e., t and t′, respectively—are different, and so t = t′ is false.
We can fix this, however, using a construction known as “factoring.”

Definition 10.13. Let Γ ∗ be a consistent and complete set of sentences in L.
We define the relation ≈ on the set of closed terms of L by

t ≈ t′ iff t = t′ ∈ Γ ∗

Proposition 10.14. fol:com:ide:

prop:approx-equiv

The relation ≈ has the following properties:

1. ≈ is reflexive.

2. ≈ is symmetric.

3. ≈ is transitive.

4. If t ≈ t′, f is a function symbol, and t1, . . . , ti−1, ti+1, . . . , tn are terms,
then

f(t1, . . . , ti−1, t, ti+1, . . . , tn) ≈ f(t1, . . . , ti−1, t
′, ti+1, . . . , tn).

5. If t ≈ t′, R is a predicate symbol, and t1, . . . , ti−1, ti+1, . . . , tn are
terms, then

R(t1, . . . , ti−1, t, ti+1, . . . , tn) ∈ Γ ∗ iff

R(t1, . . . , ti−1, t
′, ti+1, . . . , tn) ∈ Γ ∗.

160 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. Since Γ ∗ is consistent and complete, t = t′ ∈ Γ ∗ iff Γ ∗ ⊢ t = t′. Thus it
is enough to show the following:

1. Γ ∗ ⊢ t = t for all terms t.

2. If Γ ∗ ⊢ t = t′ then Γ ∗ ⊢ t′ = t.

3. If Γ ∗ ⊢ t = t′ and Γ ∗ ⊢ t′ = t′′, then Γ ∗ ⊢ t = t′′.

4. If Γ ∗ ⊢ t = t′, then

Γ ∗ ⊢ f(t1, . . . , ti−1, t, ti+1, , . . . , tn) = f(t1, . . . , ti−1, t
′, ti+1, . . . , tn)

for every n-place function symbol f and terms t1, . . . , ti−1, ti+1, . . . , tn.

5. If Γ ∗ ⊢ t = t′ and Γ ∗ ⊢ R(t1, . . . , ti−1, t, ti+1, . . . , tn), then Γ ∗ ⊢ R(t1, . . . , ti−1, t
′, ti+1, . . . , tn)

for every n-place predicate symbol R and terms t1, . . . , ti−1, ti+1, . . . , tn.

Problem 10.2. Complete the proof of Proposition 10.14.

Definition 10.15. Suppose Γ ∗ is a consistent and complete set in a lan-
guage L, t is a term, and ≈ as in the previous definition. Then:

[t]≈ = {t′ : t′ ∈ Trm(L), t ≈ t′}

and Trm(L)/≈ = {[t]≈ : t ∈ Trm(L)}.

Definition 10.16.fol:com:ide:

defn:term-model-factor

Let M = M(Γ ∗) be the term model for Γ ∗ from Defini-
tion 10.9. Then M/≈ is the following structure:

1. |M/≈| = Trm(L)/≈.

2. cM/≈ = [c]≈

3. fM/≈([t1]≈, . . . , [tn]≈) = [f(t1, . . . , tn)]≈

4. ⟨[t1]≈, . . . , [tn]≈⟩ ∈ RM/≈ iff M ⊨ R(t1, . . . , tn), i.e., iff R(t1, . . . , tn) ∈ Γ ∗.

explanationNote that we have defined fM/≈ and RM/≈ for elements of Trm(L)/≈ by
referring to them as [t]≈, i.e., via representatives t ∈ [t]≈. We have to make
sure that these definitions do not depend on the choice of these representatives,
i.e., that for some other choices t′ which determine the same equivalence classes
([t]≈ = [t′]≈), the definitions yield the same result. For instance, if R is a one-
place predicate symbol, the last clause of the definition says that [t]≈ ∈ RM/≈

iff M ⊨ R(t). If for some other term t′ with t ≈ t′, M ⊭ R(t), then the definition
would require [t′]≈ /∈ RM/≈ . If t ≈ t′, then [t]≈ = [t′]≈, but we can’t have both
[t]≈ ∈ RM/≈ and [t]≈ /∈ RM/≈ . However, Proposition 10.14 guarantees that
this cannot happen.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 161

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 10.17. M/≈ is well defined, i.e., if t1, . . . , tn, t
′
1, . . . , t′n are

terms, and ti ≈ t′i then

1. [f(t1, . . . , tn)]≈ = [f(t′1, . . . , t
′
n)]≈, i.e.,

f(t1, . . . , tn) ≈ f(t′1, . . . , t
′
n)

and

2. M ⊨ R(t1, . . . , tn) iff M ⊨ R(t′1, . . . , t
′
n), i.e.,

R(t1, . . . , tn) ∈ Γ ∗ iff R(t′1, . . . , t
′
n) ∈ Γ ∗.

Proof. Follows from Proposition 10.14 by induction on n.

As in the case of the term model, before proving the truth lemma we need
the following lemma.

Lemma 10.18. fol:com:ide:

lem:val-in-termmodel-factored

Let M = M(Γ ∗), then ValM/≈(t) = [t]≈.

Proof. The proof is similar to that of Lemma 10.10.

Problem 10.3. Complete the proof of Lemma 10.18.

Lemma 10.19. fol:com:ide:

lem:truth

M/≈ ⊨ φ iff φ ∈ Γ ∗ for all sentences φ.

Proof. By induction on φ, just as in the proof of Lemma 10.12. The only case
that needs additional attention is when φ ≡ t = t′.

M/≈ ⊨ t = t′ iff [t]≈ = [t′]≈ (by definition of M/≈)

iff t ≈ t′ (by definition of [t]≈)

iff t = t′ ∈ Γ ∗ (by definition of ≈).

digression Note that while M(Γ ∗) is always enumerable and infinite, M/≈ may be
finite, since it may turn out that there are only finitely many classes [t]≈. This
is to be expected, since Γ may contain sentences which require any structure
in which they are true to be finite. For instance, ∀x∀y x = y is a consistent
sentence, but is satisfied only in structures with a domain that contains exactly
one element.

10.8 The Completeness Theorem

fol:com:cth:
sec

explanation Let’s combine our results: we arrive at the completeness theorem.

Theorem 10.20 (Completeness Theorem). fol:com:cth:

thm:completeness

Let Γ be a set of sentences.
If Γ is consistent, it is satisfiable.

162 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. Suppose Γ is consistent. By Lemma 10.6, there is a saturated consistent
set Γ ′ ⊇ Γ . By Lemma 10.8, there is a Γ ∗ ⊇ Γ ′ which is consistent and
complete. Since Γ ′ ⊆ Γ ∗, for each formula φ(x), Γ ∗ contains a sentence of
the form ∃xφ(x)→φ(c) and so Γ ∗ is saturated. If Γ does not contain =, then
by Lemma 10.12, M(Γ ∗) ⊨ φ iff φ ∈ Γ ∗. From this it follows in particular that
for all φ ∈ Γ , M(Γ ∗) ⊨ φ, so Γ is satisfiable. If Γ does contain =, then by
Lemma 10.19, for all sentences φ, M/≈ ⊨ φ iff φ ∈ Γ ∗. In particular, M/≈ ⊨ φ
for all φ ∈ Γ , so Γ is satisfiable.

Corollary 10.21 (Completeness Theorem, Second Version).fol:com:cth:

cor:completeness

For all Γ
and sentences φ: if Γ ⊨ φ then Γ ⊢ φ.

Proof. Note that the Γ ’s in Corollary 10.21 and Theorem 10.20 are univer-
sally quantified. To make sure we do not confuse ourselves, let us restate
Theorem 10.20 using a different variable: for any set of sentences ∆, if ∆ is
consistent, it is satisfiable. By contraposition, if ∆ is not satisfiable, then ∆ is
inconsistent. We will use this to prove the corollary.

Suppose that Γ ⊨ φ. Then Γ ∪ {¬φ} is unsatisfiable by Proposition 3.27.
Taking Γ ∪{¬φ} as our ∆, the previous version of Theorem 10.20 gives us that
Γ ∪ {¬φ} is inconsistent. By Propositions 6.19, 7.19, 8.19 and 9.27, Γ ⊢ φ.

Problem 10.4. Use Corollary 10.21 to prove Theorem 10.20, thus showing
that the two formulations of the completeness theorem are equivalent.

Problem 10.5. In order for a derivation system to be complete, its rules must
be strong enough to prove every unsatisfiable set inconsistent. Which of the
rules of derivation were necessary to prove completeness? Are any of these rules
not used anywhere in the proof? In order to answer these questions, make a
list or diagram that shows which of the rules of derivation were used in which
results that lead up to the proof of Theorem 10.20. Be sure to note any tacit
uses of rules in these proofs.

10.9 The Compactness Theorem

fol:com:com:
sec

One important consequence of the completeness theorem is the compactness
theorem. The compactness theorem states that if each finite subset of a set
of sentences is satisfiable, the entire set is satisfiable—even if the set itself is
infinite. This is far from obvious. There is nothing that seems to rule out,
at first glance at least, the possibility of there being infinite sets of sentences
which are contradictory, but the contradiction only arises, so to speak, from
the infinite number. The compactness theorem says that such a scenario can
be ruled out: there are no unsatisfiable infinite sets of sentences each finite
subset of which is satisfiable. Like the completeness theorem, it has a version
related to entailment: if an infinite set of sentences entails something, already
a finite subset does.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 163

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition 10.22. A set Γ of formulas is finitely satisfiable iff every finite
Γ0 ⊆ Γ is satisfiable.

Theorem 10.23 (Compactness Theorem). fol:com:com:

thm:compactness

The following hold for any sen-
tences Γ and φ:

1. Γ ⊨ φ iff there is a finite Γ0 ⊆ Γ such that Γ0 ⊨ φ.

2. Γ is satisfiable iff it is finitely satisfiable.

Proof. We prove (2). If Γ is satisfiable, then there is a structure M such that
M ⊨ φ for all φ ∈ Γ . Of course, this M also satisfies every finite subset of Γ ,
so Γ is finitely satisfiable.

Now suppose that Γ is finitely satisfiable. Then every finite subset Γ0 ⊆ Γ
is satisfiable. By soundness (Corollaries 6.31, 7.29, 8.31 and 9.38), every finite
subset is consistent. Then Γ itself must be consistent by Propositions 6.17,
7.17, 8.17 and 9.21. By completeness (Theorem 10.20), since Γ is consistent,
it is satisfiable.

Problem 10.6. Prove (1) of Theorem 10.23.

Example 10.24. In every model M of a theory Γ , each term t of course picks
out an element of |M|. Can we guarantee that it is also true that every element
of |M| is picked out by some term or other? In other words, are there theories Γ
all models of which are covered? The compactness theorem shows that this is
not the case if Γ has infinite models. Here’s how to see this: Let M be an
infinite model of Γ , and let c be a constant symbol not in the language of Γ .
Let ∆ be the set of all sentences c ̸= t for t a term in the language L of Γ , i.e.,

∆ = {c ̸= t : t ∈ Trm(L)}.

A finite subset of Γ ∪∆ can be written as Γ ′ ∪∆′, with Γ ′ ⊆ Γ and ∆′ ⊆ ∆.
Since ∆′ is finite, it can contain only finitely many terms. Let a ∈ |M| be
an element of |M| not picked out by any of them, and let M′ be the structure
that is just like M, but also cM

′
= a. Since a ̸= ValM(t) for all t occurring

in ∆′, M′ ⊨ ∆′. Since M ⊨ Γ , Γ ′ ⊆ Γ , and c does not occur in Γ , also M′ ⊨ Γ ′.
Together, M′ ⊨ Γ ′ ∪∆′ for every finite subset Γ ′ ∪∆′ of Γ ∪∆. So every finite
subset of Γ ∪∆ is satisfiable. By compactness, Γ ∪∆ itself is satisfiable. So
there are models M ⊨ Γ ∪∆. Every such M is a model of Γ , but is not covered,
since ValM(c) ̸= ValM(t) for all terms t of L.

Example 10.25. Consider a language L containing the predicate symbol <,
constant symbols 0, 1, and function symbols +, ×, −, ÷. Let Γ be the set
of all sentences in this language true in Q with domain Q and the obvious
interpretations. Γ is the set of all sentences of L true about the rational
numbers. Of course, in Q (and even in R), there are no numbers which are
greater than 0 but less than 1/k for all k ∈ Z+. Such a number, if it existed,
would be an infinitesimal: non-zero, but infinitely small. The compactness

164 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

theorem shows that there are models of Γ in which infinitesimals exist: Let ∆
be {0 < c}∪{c < (1÷k) : k ∈ Z+} (where k = (1+(1+ · · ·+(1+1) . . .)) with
k 1’s). For any finite subset ∆0 of ∆ there is a K such that all the sentences
c < (1÷ k) in ∆0 have k < K. If we expand Q to Q′ with cQ

′
= 1/K we have

that Q′ ⊨ Γ ∪∆0, and so Γ ∪∆ is finitely satisfiable (Exercise: prove this in
detail). By compactness, Γ ∪∆ is satisfiable. Any model S of Γ ∪∆ contains
an infinitesimal, namely cS.

Problem 10.7. In the standard model of arithmetic N, there is no element k ∈
|N| which satisfies every formula n < x (where n is 0′...′ with n ′’s). Use the
compactness theorem to show that the set of sentences in the language of
arithmetic which are true in the standard model of arithmetic N are also true
in a structure N′ that contains an element which does satisfy every formula
n < x.

Example 10.26. We know that first-order logic with identity predicate can
express that the size of the domain must have some minimal size: The sen-
tence φ≥n (which says “there are at least n distinct objects”) is true only in
structures where |M| has at least n objects. So if we take

∆ = {φ≥n : n ≥ 1}

then any model of ∆ must be infinite. Thus, we can guarantee that a theory
only has infinite models by adding ∆ to it: the models of Γ ∪ ∆ are all and
only the infinite models of Γ .

So first-order logic can express infinitude. The compactness theorem shows
that it cannot express finitude, however. For suppose some set of sentences Λ
were satisfied in all and only finite structures. Then ∆∪Λ is finitely satisfiable.
Why? Suppose ∆′∪Λ′ ⊆ ∆∪Λ is finite with ∆′ ⊆ ∆ and Λ′ ⊆ Λ. Let n be the
largest number such that φ≥n ∈ ∆′. Λ, being satisfied in all finite structures,
has a model M with finitely many but ≥ n elements. But then M ⊨ ∆′ ∪ Λ′.
By compactness, ∆ ∪ Λ has an infinite model, contradicting the assumption
that Λ is satisfied only in finite structures.

10.10 A Direct Proof of the Compactness Theorem

fol:com:cpd:
sec

We can prove the Compactness Theorem directly, without appealing to the
Completeness Theorem, using the same ideas as in the proof of the complete-
ness theorem. In the proof of the Completeness Theorem we started with a
consistent set Γ of sentences, expanded it to a consistent, saturated, and com-
plete set Γ ∗ of sentences, and then showed that in the term model M(Γ ∗)
constructed from Γ ∗, all sentences of Γ are true, so Γ is satisfiable.

We can use the same method to show that a finitely satisfiable set of sen-
tences is satisfiable. We just have to prove the corresponding versions of the
results leading to the truth lemma where we replace “consistent” with “finitely
satisfiable.”

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 165

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 10.27. fol:com:cpd:

prop:fsat-ccs

Suppose Γ is complete and finitely satisfiable. Then:

1. (φ ∧ ψ) ∈ Γ iff both φ ∈ Γ and ψ ∈ Γ .

2. (φ ∨ ψ) ∈ Γ iff either φ ∈ Γ or ψ ∈ Γ .

3. (φ→ ψ) ∈ Γ iff either φ /∈ Γ or ψ ∈ Γ .

Problem 10.8. Prove Proposition 10.27. Avoid the use of ⊢.

Lemma 10.28. fol:com:cpd:

lem:fsat-henkin

Every finitely satisfiable set Γ can be extended to a saturated
finitely satisfiable set Γ ′.

Problem 10.9. Prove Lemma 10.28. (Hint: The crucial step is to show that
if Γn is finitely satisfiable, so is Γn ∪ {θn}, without any appeal to derivations
or consistency.)

Proposition 10.29. fol:com:cpd:

prop:fsat-instances

Suppose Γ is complete, finitely satisfiable, and saturated.

1. ∃xφ(x) ∈ Γ iff φ(t) ∈ Γ for at least one closed term t.

2. ∀xφ(x) ∈ Γ iff φ(t) ∈ Γ for all closed terms t.

Problem 10.10. Prove Proposition 10.29.

Lemma 10.30. fol:com:cpd:

lem:fsat-lindenbaum

Every finitely satisfiable set Γ can be extended to a complete
and finitely satisfiable set Γ ∗.

Problem 10.11. Prove Lemma 10.30. (Hint: the crucial step is to show that
if Γn is finitely satisfiable, then either Γn ∪ {φn} or Γn ∪ {¬φn} is finitely
satisfiable.)

Theorem 10.31 (Compactness). fol:com:cpd:

thm:compactness-direct

Γ is satisfiable if and only if it is finitely
satisfiable.

Proof. If Γ is satisfiable, then there is a structure M such that M ⊨ φ for all
φ ∈ Γ . Of course, this M also satisfies every finite subset of Γ , so Γ is finitely
satisfiable.

Now suppose that Γ is finitely satisfiable. By Lemma 10.28, there is a
finitely satisfiable, saturated set Γ ′ ⊇ Γ . By Lemma 10.30, Γ ′ can be extended
to a complete and finitely satisfiable set Γ ∗, and Γ ∗ is still saturated. Construct
the term model M(Γ ∗) as in Definition 10.9. Note that Proposition 10.11 did
not rely on the fact that Γ ∗ is consistent (or complete or saturated, for that
matter), but just on the fact that M(Γ ∗) is covered. The proof of the Truth
Lemma (Lemma 10.12) goes through if we replace references to Proposition 10.2
and Proposition 10.7 by references to Proposition 10.27 and Proposition 10.29

Problem 10.12. Write out the complete proof of the Truth Lemma (Lemma 10.12)
in the version required for the proof of Theorem 10.31.

166 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

10.11 The Löwenheim-Skolem Theorem

fol:com:dls:
sec

The Löwenheim-Skolem Theorem says that if a theory has an infinite model,
then it also has a model that is at most denumerable. An immediate con-
sequence of this fact is that first-order logic cannot express that the size of
a structure is non-enumerable: any sentence or set of sentences satisfied in all
non-enumerable structures is also satisfied in some enumerable structure.

Theorem 10.32.fol:com:dls:

thm:downward-ls

If Γ is consistent then it has an enumerable model, i.e., it
is satisfiable in a structure whose domain is either finite or denumerable.

Proof. If Γ is consistent, the structure M delivered by the proof of the com-
pleteness theorem has a domain |M| that is no larger than the set of the terms
of the language L. So M is at most denumerable.

Theorem 10.33.fol:com:dls:

noidentity-ls

If Γ is a consistent set of sentences in the language of
first-order logic without identity, then it has a denumerable model, i.e., it is
satisfiable in a structure whose domain is infinite and enumerable.

Proof. If Γ is consistent and contains no sentences in which identity appears,
then the structure M delivered by the proof of the completeness theorem has
a domain |M| identical to the set of terms of the language L′. So M is denu-
merable, since Trm(L′) is.

Example 10.34 (Skolem’s Paradox). Zermelo-Fraenkel set theory ZFC is
a very powerful framework in which practically all mathematical statements
can be expressed, including facts about the sizes of sets. So for instance,
ZFC can prove that the set R of real numbers is non-enumerable, it can prove
Cantor’s Theorem that the power set of any set is larger than the set itself,
etc. If ZFC is consistent, its models are all infinite, and moreover, they all
contain elements about which the theory says that they are non-enumerable,
such as the element that makes true the theorem of ZFC that the power set
of the natural numbers exists. By the Löwenheim-Skolem Theorem, ZFC also
has enumerable models—models that contain “non-enumerable” sets but which
themselves are enumerable.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 167

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 11

Beyond First-order Logic

This chapter, adapted from Jeremy Avigad’s logic notes, gives the
briefest of glimpses into which other logical systems there are. It is in-
tended as a chapter suggesting further topics for study in a course that does
not cover them. Each one of the topics mentioned here will—hopefully—
eventually receive its own part-level treatment in the Open Logic Project.

11.1 Overview

fol:byd:int:
sec

First-order logic is not the only system of logic of interest: there are many
extensions and variations of first-order logic. A logic typically consists of the
formal specification of a language, usually, but not always, a deductive system,
and usually, but not always, an intended semantics. But the technical use of
the term raises an obvious question: what do logics that are not first-order
logic have to do with the word “logic,” used in the intuitive or philosophical
sense? All of the systems described below are designed to model reasoning of
some form or another; can we say what makes them logical?

No easy answers are forthcoming. The word “logic” is used in different
ways and in different contexts, and the notion, like that of “truth,” has been
analyzed from numerous philosophical stances. For example, one might take
the goal of logical reasoning to be the determination of which statements are
necessarily true, true a priori, true independent of the interpretation of the
nonlogical terms, true by virtue of their form, or true by linguistic convention;
and each of these conceptions requires a good deal of clarification. Even if
one restricts one’s attention to the kind of logic used in mathematics, there is
little agreement as to its scope. For example, in the Principia Mathematica,
Russell and Whitehead tried to develop mathematics on the basis of logic,
in the logicist tradition begun by Frege. Their system of logic was a form
of higher-type logic similar to the one described below. In the end they were
forced to introduce axioms which, by most standards, do not seem purely logical
(notably, the axiom of infinity, and the axiom of reducibility), but one might

168

nonetheless hold that some forms of higher-order reasoning should be accepted
as logical. In contrast, Quine, whose ontology does not admit “propositions”
as legitimate objects of discourse, argues that second-order and higher-order
logic are really manifestations of set theory in sheep’s clothing; in other words,
systems involving quantification over predicates are not purely logical.

For now, it is best to leave such philosophical issues for a rainy day, and
simply think of the systems below as formal idealizations of various kinds of
reasoning, logical or otherwise.

11.2 Many-Sorted Logic

fol:byd:msl:
sec

In first-order logic, variables and quantifiers range over a single domain. But
it is often useful to have multiple (disjoint) domains: for example, you might
want to have a domain of numbers, a domain of geometric objects, a domain
of functions from numbers to numbers, a domain of abelian groups, and so on.

Many-sorted logic provides this kind of framework. One starts with a list
of “sorts”—the “sort” of an object indicates the “domain” it is supposed to
inhabit. One then has variables and quantifiers for each sort, and (usually)
an identity predicate for each sort. Functions and relations are also “typed”
by the sorts of objects they can take as arguments. Otherwise, one keeps the
usual rules of first-order logic, with versions of the quantifier-rules repeated for
each sort.

For example, to study international relations we might choose a language
with two sorts of objects, French citizens and German citizens. We might have
a unary relation, “drinks wine,” for objects of the first sort; another unary
relation, “eats wurst,” for objects of the second sort; and a binary relation,
“forms a multinational married couple,” which takes two arguments, where
the first argument is of the first sort and the second argument is of the second
sort. If we use variables a, b, c to range over French citizens and x, y, z to
range over German citizens, then

∀a ∀x[(Marr iedTo(a, x) → (DrinksW ine(a) ∨ ¬EatsWurst(x))]]

asserts that if any French person is married to a German, either the French
person drinks wine or the German doesn’t eat wurst.

Many-sorted logic can be embedded in first-order logic in a natural way,
by lumping all the objects of the many-sorted domains together into one first-
order domain, using unary predicate symbols to keep track of the sorts, and
relativizing quantifiers. For example, the first-order language corresponding
to the example above would have unary predicate symbols “German” and
“F rench,” in addition to the other relations described, with the sort require-
ments erased. A sorted quantifier ∀xφ, where x is a variable of the German
sort, translates to

∀x (German(x) → φ).

We need to add axioms that insure that the sorts are separate—e.g., ∀x¬(German(x)∧
F rench(x))—as well as axioms that guarantee that “drinks wine” only holds

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 169

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

of objects satisfying the predicate F rench(x), etc. With these conventions
and axioms, it is not difficult to show that many-sorted sentences translate
to first-order sentences, and many-sorted derivations translate to first-order
derivations. Also, many-sorted structures “translate” to corresponding first-
order structures and vice-versa, so we also have a completeness theorem for
many-sorted logic.

11.3 Second-Order logic

fol:byd:sol:
sec

The language of second-order logic allows one to quantify not just over a domain
of individuals, but over relations on that domain as well. Given a first-order
language L, for each k one adds variables R which range over k-ary relations,
and allows quantification over those variables. If R is a variable for a k-ary
relation, and t1, . . . , tk are ordinary (first-order) terms, R(t1, . . . , tk) is an
atomic formula. Otherwise, the set of formulas is defined just as in the case of
first-order logic, with additional clauses for second-order quantification. Note
that we only have the identity predicate for first-order terms: if R and S are
relation variables of the same arity k, we can define R = S to be an abbreviation
for

∀x1 . . . ∀xk (R(x1, . . . , xk) ↔ S(x1, . . . , xk)).

The rules for second-order logic simply extend the quantifier rules to the
new second order variables. Here, however, one has to be a little bit careful to
explain how these variables interact with the predicate symbols of L, and with
formulas of L more generally. At the bare minimum, relation variables count
as terms, so one has inferences of the form

φ(R) ⊢ ∃Rφ(R)

But if L is the language of arithmetic with a constant relation symbol <, one
would also expect the following inference to be valid:

x < y ⊢ ∃RR(x, y)

or for a given formula φ,

φ(x1, . . . , xk) ⊢ ∃RR(x1, . . . , xk)

More generally, we might want to allow inferences of the form

φ[λx⃗. ψ(x⃗)/R] ⊢ ∃Rφ

where φ[λx⃗. ψ(x⃗)/R] denotes the result of replacing every atomic formula of
the form Rt1, . . . , tk in φ by ψ(t1, . . . , tk). This last rule is equivalent to having
a comprehension schema, i.e., an axiom of the form

∃R ∀x1, . . . , xk (φ(x1, . . . , xk) ↔R(x1, . . . , xk)),

170 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

one for each formula φ in the second-order language, in which R is not a free
variable. (Exercise: show that if R is allowed to occur in φ, this schema is
inconsistent!)

When logicians refer to the “axioms of second-order logic” they usually
mean the minimal extension of first-order logic by second-order quantifier rules
together with the comprehension schema. But it is often interesting to study
weaker subsystems of these axioms and rules. For example, note that in its full
generality the axiom schema of comprehension is impredicative: it allows one to
assert the existence of a relation R(x1, . . . , xk) that is “defined” by a formula
with second-order quantifiers; and these quantifiers range over the set of all
such relations—a set which includes R itself! Around the turn of the twentieth
century, a common reaction to Russell’s paradox was to lay the blame on such
definitions, and to avoid them in developing the foundations of mathematics.
If one prohibits the use of second-order quantifiers in the formula φ, one has a
predicative form of comprehension, which is somewhat weaker.

From the semantic point of view, one can think of a second-order struc-
ture as consisting of a first-order structure for the language, coupled with a
set of relations on the domain over which the second-order quantifiers range
(more precisely, for each k there is a set of relations of arity k). Of course, if
comprehension is included in the derivation system, then we have the added
requirement that there are enough relations in the “second-order part” to sat-
isfy the comprehension axioms—otherwise the derivation system is not sound!
One easy way to insure that there are enough relations around is to take the
second-order part to consist of all the relations on the first-order part. Such
a structure is called full, and, in a sense, is really the “intended structure”
for the language. If we restrict our attention to full structures we have what
is known as the full second-order semantics. In that case, specifying a struc-
ture boils down to specifying the first-order part, since the contents of the
second-order part follow from that implicitly.

To summarize, there is some ambiguity when talking about second-order
logic. In terms of the derivation system, one might have in mind either

1. A “minimal” second-order derivation system, together with some com-
prehension axioms.

2. The “standard” second-order derivation system, with full comprehension.

In terms of the semantics, one might be interested in either

1. The “weak” semantics, where a structure consists of a first-order part,
together with a second-order part big enough to satisfy the comprehension
axioms.

2. The “standard” second-order semantics, in which one considers full struc-
tures only.

When logicians do not specify the derivation system or the semantics they have
in mind, they are usually referring to the second item on each list. The ad-
vantage to using this semantics is that, as we will see, it gives us categorical

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 171

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

descriptions of many natural mathematical structures; at the same time, the
derivation system is quite strong, and sound for this semantics. The drawback
is that the derivation system is not complete for the semantics; in fact, no
effectively given derivation system is complete for the full second-order seman-
tics. On the other hand, we will see that the derivation system is complete for
the weakened semantics; this implies that if a sentence is not provable, then
there is some structure, not necessarily the full one, in which it is false.

The language of second-order logic is quite rich. One can identify unary
relations with subsets of the domain, and so in particular you can quantify over
these sets; for example, one can express induction for the natural numbers with
a single axiom

∀R ((R(0) ∧ ∀x (R(x) →R(x′))) →∀xR(x)).

If one takes the language of arithmetic to have symbols 0, ′,+,× and <, one
can add the following axioms to describe their behavior:

1. ∀x¬x′ = 0

2. ∀x ∀y (s(x) = s(y) → x = y)

3. ∀x (x+ 0) = x

4. ∀x∀y (x+ y′) = (x+ y)′

5. ∀x (x× 0) = 0

6. ∀x∀y (x× y′) = ((x× y) + x)

7. ∀x∀y (x < y↔∃z y = (x+ z′))

It is not difficult to show that these axioms, together with the axiom of induc-
tion above, provide a categorical description of the structure N, the standard
model of arithmetic, provided we are using the full second-order semantics.
Given any structure M in which these axioms are true, define a function f
from N to the domain of M using ordinary recursion on N, so that f(0) = 0M

and f(x + 1) = ′M(f(x)). Using ordinary induction on N and the fact that
axioms (1) and (2) hold in M, we see that f is injective. To see that f is
surjective, let P be the set of elements of |M| that are in the range of f . Since
M is full, P is in the second-order domain. By the construction of f , we know
that 0M is in P , and that P is closed under ′M. The fact that the induction
axiom holds in M (in particular, for P) guarantees that P is equal to the entire
first-order domain of M. This shows that f is a bijection. Showing that f is a
homomorphism is no more difficult, using ordinary induction on N repeatedly.

In set-theoretic terms, a function is just a special kind of relation; for ex-
ample, a unary function f can be identified with a binary relation R satisfying
∀x∃!y R(x, y). As a result, one can quantify over functions too. Using the full
semantics, one can then define the class of infinite structures to be the class of

172 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

structures M for which there is an injective function from the domain of M to
a proper subset of itself:

∃f (∀x∀y (f(x) = f(y) → x = y) ∧ ∃y ∀x f(x) ̸= y).

The negation of this sentence then defines the class of finite structures.
In addition, one can define the class of well-orderings, by adding the follow-

ing to the definition of a linear ordering:

∀P (∃xP (x) →∃x (P (x) ∧ ∀y (y < x→¬P (y)))).

This asserts that every non-empty set has a least element, modulo the identifi-
cation of “set” with “one-place relation”. For another example, one can express
the notion of connectedness for graphs, by saying that there is no nontrivial
separation of the vertices into disconnected parts:

¬∃A (∃xA(x) ∧ ∃y ¬A(y) ∧ ∀w ∀z ((A(w) ∧ ¬A(z)) →¬R(w, z))).

For yet another example, you might try as an exercise to define the class of
finite structures whose domain has even size. More strikingly, one can pro-
vide a categorical description of the real numbers as a complete ordered field
containing the rationals.

In short, second-order logic is much more expressive than first-order logic.
That’s the good news; now for the bad. We have already mentioned that
there is no effective derivation system that is complete for the full second-order
semantics. For better or for worse, many of the properties of first-order logic
are absent, including compactness and the Löwenheim-Skolem theorems.

On the other hand, if one is willing to give up the full second-order semantics
in terms of the weaker one, then the minimal second-order derivation system
is complete for this semantics. In other words, if we read ⊢ as “proves in
the minimal system” and ⊨ as “logically implies in the weaker semantics”,
we can show that whenever Γ ⊨ φ then Γ ⊢ φ. If one wants to include
specific comprehension axioms in the derivation system, one has to restrict the
semantics to second-order structures that satisfy these axioms: for example, if
∆ consists of a set of comprehension axioms (possibly all of them), we have
that if Γ ∪ ∆ ⊨ φ, then Γ ∪ ∆ ⊢ φ. In particular, if φ is not provable using
the comprehension axioms we are considering, then there is a model of ¬φ in
which these comprehension axioms nonetheless hold.

The easiest way to see that the completeness theorem holds for the weaker
semantics is to think of second-order logic as a many-sorted logic, as follows.
One sort is interpreted as the ordinary “first-order” domain, and then for each
k we have a domain of “relations of arity k.” We take the language to have
built-in relation symbols “truek(R, x1, . . . , xk)” which is meant to assert that
R holds of x1, . . . , xk, where R is a variable of the sort “k-ary relation” and
x1, . . . , xk are objects of the first-order sort.

With this identification, the weak second-order semantics is essentially the
usual semantics for many-sorted logic; and we have already observed that

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 173

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

many-sorted logic can be embedded in first-order logic. Modulo the trans-
lations back and forth, then, the weaker conception of second-order logic is
really a form of first-order logic in disguise, where the domain contains both
“objects” and “relations” governed by the appropriate axioms.

11.4 Higher-Order logic

fol:byd:hol:
sec

Passing from first-order logic to second-order logic enabled us to talk about
sets of objects in the first-order domain, within the formal language. Why stop
there? For example, third-order logic should enable us to deal with sets of sets
of objects, or perhaps even sets which contain both objects and sets of objects.
And fourth-order logic will let us talk about sets of objects of that kind. As
you may have guessed, one can iterate this idea arbitrarily.

In practice, higher-order logic is often formulated in terms of functions in-
stead of relations. (Modulo the natural identifications, this difference is inessen-
tial.) Given some basic “sorts” A, B, C, . . . (which we will now call “types”),
we can create new ones by stipulating

If σ and τ are finite types then so is σ → τ .

Think of types as syntactic “labels,” which classify the objects we want in our
domain; σ → τ describes those objects that are functions which take objects
of type σ to objects of type τ . For example, we might want to have a type
Ω of truth values, “true” and “false,” and a type N of natural numbers. In
that case, you can think of objects of type N → Ω as unary relations, or
subsets of N; objects of type N → N are functions from natural numbers to
natural numbers; and objects of type (N → N) → N are “functionals,” that is,
higher-type functions that take functions to numbers.

As in the case of second-order logic, one can think of higher-order logic as a
kind of many-sorted logic, where there is a sort for each type of object we want
to consider. But it is usually clearer just to define the syntax of higher-type
logic from the ground up. For example, we can define a set of finite types
inductively, as follows:

1. N is a finite type.

2. If σ and τ are finite types, then so is σ → τ .

3. If σ and τ are finite types, so is σ × τ .

Intuitively, N denotes the type of the natural numbers, σ → τ denotes the
type of functions from σ to τ , and σ × τ denotes the type of pairs of objects,
one from σ and one from τ . We can then define a set of terms inductively, as
follows:

1. For each type σ, there is a stock of variables x, y, z, . . . of type σ

2. 0 is a term of type N

174 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

3. S (successor) is a term of type N → N

4. If s is a term of type σ, and t is a term of type N → (σ → σ), then Rst
is a term of type N → σ

5. If s is a term of type τ → σ and t is a term of type τ , then s(t) is a term
of type σ

6. If s is a term of type σ and x is a variable of type τ , then λx. s is a term
of type τ → σ.

7. If s is a term of type σ and t is a term of type τ , then ⟨s, t⟩ is a term of
type σ × τ .

8. If s is a term of type σ × τ then p1(s) is a term of type σ and p2(s) is a
term of type τ .

Intuitively, Rst denotes the function defined recursively by

Rst(0) = s

Rst(x+ 1) = t(x,Rst(x)),

⟨s, t⟩ denotes the pair whose first component is s and whose second component
is t, and p1(s) and p2(s) denote the first and second elements (“projections”)
of s. Finally, λx. s denotes the function f defined by

f(x) = s

for any x of type σ; so item (6) gives us a form of comprehension, enabling us
to define functions using terms. Formulas are built up from identity predicate
statements s = t between terms of the same type, the usual propositional
connectives, and higher-type quantification. One can then take the axioms
of the system to be the basic equations governing the terms defined above,
together with the usual rules of logic with quantifiers and identity predicate.

If one augments the finite type system with a type Ω of truth values, one
has to include axioms which govern its use as well. In fact, if one is clever, one
can get rid of complex formulas entirely, replacing them with terms of type Ω!
The proof system can then be modified accordingly. The result is essentially
the simple theory of types set forth by Alonzo Church in the 1930s.

As in the case of second-order logic, there are different versions of higher-
type semantics that one might want to use. In the full version, variables of
type σ → τ range over the set of all functions from the objects of type σ to
objects of type τ . As you might expect, this semantics is too strong to admit a
complete, effective derivation system. But one can consider a weaker semantics,
in which a structure consists of sets of elements Tτ for each type τ , together
with appropriate operations for application, projection, etc. If the details are
carried out correctly, one can obtain completeness theorems for the kinds of
derivation systems described above.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 175

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Higher-type logic is attractive because it provides a framework in which
we can embed a good deal of mathematics in a natural way: starting with
N, one can define real numbers, continuous functions, and so on. It is also
particularly attractive in the context of intuitionistic logic, since the types
have clear “constructive” interpretations. In fact, one can develop constructive
versions of higher-type semantics (based on intuitionistic, rather than classical
logic) that clarify these constructive interpretations quite nicely, and are, in
many ways, more interesting than the classical counterparts.

11.5 Intuitionistic Logic

fol:byd:il:
sec

In contrast to second-order and higher-order logic, intuitionistic first-order logic
represents a restriction of the classical version, intended to model a more “con-
structive” kind of reasoning. The following examples may serve to illustrate
some of the underlying motivations.

Suppose someone came up to you one day and announced that they had
determined a natural number x, with the property that if x is prime, the
Riemann hypothesis is true, and if x is composite, the Riemann hypothesis is
false. Great news! Whether the Riemann hypothesis is true or not is one of
the big open questions of mathematics, and here they seem to have reduced
the problem to one of calculation, that is, to the determination of whether a
specific number is prime or not.

What is the magic value of x? They describe it as follows: x is the natural
number that is equal to 7 if the Riemann hypothesis is true, and 9 otherwise.

Angrily, you demand your money back. From a classical point of view, the
description above does in fact determine a unique value of x; but what you
really want is a value of x that is given explicitly.

To take another, perhaps less contrived example, consider the following
question. We know that it is possible to raise an irrational number to a rational

power, and get a rational result. For example,
√

2
2

= 2. What is less clear
is whether or not it is possible to raise an irrational number to an irrational
power, and get a rational result. The following theorem answers this in the
affirmative:

Theorem 11.1. There are irrational numbers a and b such that ab is rational.

Proof. Consider
√

2
√
2
. If this is rational, we are done: we can let a = b =

√
2.

Otherwise, it is irrational. Then we have

(
√

2

√
2
)
√
2 =

√
2

√
2·
√
2

=
√

2
2

= 2,

which is certainly rational. So, in this case, let a be
√

2
√
2
, and let b be

√
2.

Does this constitute a valid proof? Most mathematicians feel that it does.
But again, there is something a little bit unsatisfying here: we have proved

176 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

the existence of a pair of real numbers with a certain property, without being
able to say which pair of numbers it is. It is possible to prove the same result,
but in such a way that the pair a, b is given in the proof: take a =

√
3 and

b = log3 4. Then

ab =
√

3
log3 4

= 31/2·log3 4 = (3log3 4)1/2 = 41/2 = 2,

since 3log3 x = x.
Intuitionistic logic is designed to model a kind of reasoning where moves

like the one in the first proof are disallowed. Proving the existence of an x
satisfying φ(x) means that you have to give a specific x, and a proof that it
satisfies φ, like in the second proof. Proving that φ or ψ holds requires that
you can prove one or the other.

Formally speaking, intuitionistic first-order logic is what you get if you
restrict a derivation system for first-order logic in a certain way. Similarly,
there are intuitionistic versions of second-order or higher-order logic. From the
mathematical point of view, these are just formal deductive systems, but, as
already noted, they are intended to model a kind of mathematical reasoning.
One can take this to be the kind of reasoning that is justified on a certain
philosophical view of mathematics (such as Brouwer’s intuitionism); one can
take it to be a kind of mathematical reasoning which is more “concrete” and
satisfying (along the lines of Bishop’s constructivism); and one can argue about
whether or not the formal description captures the informal motivation. But
whatever philosophical positions we may hold, we can study intuitionistic logic
as a formally presented logic; and for whatever reasons, many mathematical
logicians find it interesting to do so.

There is an informal constructive interpretation of the intuitionist connec-
tives, usually known as the BHK interpretation (named after Brouwer, Heyting,
and Kolmogorov). It runs as follows: a proof of φ ∧ ψ consists of a proof of
φ paired with a proof of ψ; a proof of φ ∨ ψ consists of either a proof of φ,
or a proof of ψ, where we have explicit information as to which is the case;
a proof of φ→ ψ consists of a procedure, which transforms a proof of φ to a
proof of ψ; a proof of ∀xφ(x) consists of a procedure which returns a proof of
φ(x) for any value of x; and a proof of ∃xφ(x) consists of a value of x, together
with a proof that this value satisfies φ. One can describe the interpretation in
computational terms known as the “Curry-Howard isomorphism” or the “for-
mulas-as-types paradigm”: think of a formula as specifying a certain kind of
data type, and proofs as computational objects of these data types that enable
us to see that the corresponding formula is true.

Intuitionistic logic is often thought of as being classical logic “minus” the
law of the excluded middle. This following theorem makes this more precise.

Theorem 11.2. Intuitionistically, the following axiom schemata are equiva-
lent:

1. (φ→⊥) →¬φ.

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 177

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. φ ∨ ¬φ

3. ¬¬φ→ φ

Obtaining instances of one schema from either of the others is a good exercise
in intuitionistic logic.

The first deductive systems for intuitionistic propositional logic, put forth
as formalizations of Brouwer’s intuitionism, are due, independently, to Kol-
mogorov, Glivenko, and Heyting. The first formalization of intuitionistic first-
order logic (and parts of intuitionist mathematics) is due to Heyting. Though
a number of classically valid schemata are not intuitionistically valid, many
are.

The double-negation translation describes an important relationship be-
tween classical and intuitionist logic. It is defined inductively follows (think of
φN as the “intuitionist” translation of the classical formula φ):

φN ≡ ¬¬φ for atomic formulas φ

(φ ∧ ψ)N ≡ (φN ∧ ψN)

(φ ∨ ψ)N ≡ ¬¬(φN ∨ ψN)

(φ→ ψ)N ≡ (φN → ψN)

(∀xφ)N ≡ ∀xφN

(∃xφ)N ≡ ¬¬∃xφN

Kolmogorov and Glivenko had versions of this translation for propositional
logic; for predicate logic, it is due to Gödel and Gentzen, independently. We
have

Theorem 11.3. 1. φ↔ φN is provable classically

2. If φ is provable classically, then φN is provable intuitionistically.

We can now envision the following dialogue. Classical mathematician: “I’ve
proved φ!” Intuitionist mathematician: “Your proof isn’t valid. What you’ve
really proved is φN .” Classical mathematician: “Fine by me!” As far as the
classical mathematician is concerned, the intuitionist is just splitting hairs,
since the two are equivalent. But the intuitionist insists there is a difference.

Note that the above translation concerns pure logic only; it does not address
the question as to what the appropriate nonlogical axioms are for classical and
intuitionistic mathematics, or what the relationship is between them. But the
following slight extension of the theorem above provides some useful informa-
tion:

Theorem 11.4. If Γ proves φ classically, ΓN proves φN intuitionistically.

In other words, if φ is provable from some hypotheses classically, then φN

is provable from their double-negation translations.

178 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

To show that a sentence or propositional formula is intuitionistically valid,
all you have to do is provide a proof. But how can you show that it is not
valid? For that purpose, we need a semantics that is sound, and preferably
complete. A semantics due to Kripke nicely fits the bill.

We can play the same game we did for classical logic: define the semantics,
and prove soundness and completeness. It is worthwhile, however, to note
the following distinction. In the case of classical logic, the semantics was the
“obvious” one, in a sense implicit in the meaning of the connectives. Though
one can provide some intuitive motivation for Kripke semantics, the latter does
not offer the same feeling of inevitability. In addition, the notion of a classical
structure is a natural mathematical one, so we can either take the notion of
a structure to be a tool for studying classical first-order logic, or take classical
first-order logic to be a tool for studying mathematical structures. In contrast,
Kripke structures can only be viewed as a logical construct; they don’t seem
to have independent mathematical interest.

A Kripke structure M = ⟨W,R, V ⟩ for a propositional language consists
of a set W , partial order R on W with a least element, and an “monotone”
assignment of propositional variables to the elements of W . The intuition is
that the elements ofW represent “worlds,” or “states of knowledge”; an element
v ≥ u represents a “possible future state” of u; and the propositional variables
assigned to u are the propositions that are known to be true in state u. The
forcing relation M, w ⊩ φ then extends this relationship to arbitrary formulas
in the language; read M, w ⊩ φ as “φ is true in state w.” The relationship is
defined inductively, as follows:

1. M, w ⊩ pi iff pi is one of the propositional variables assigned to w.

2. M, w ⊮ ⊥.

3. M, w ⊩ (φ ∧ ψ) iff M, w ⊩ φ and M, w ⊩ ψ.

4. M, w ⊩ (φ ∨ ψ) iff M, w ⊩ φ or M, w ⊩ ψ.

5. M, w ⊩ (φ→ ψ) iff, whenever w′ ≥ w and M, w′ ⊩ φ, then M, w′ ⊩ ψ.

It is a good exercise to try to show that ¬(p∧ q)→ (¬p∨¬q) is not intuitionis-
tically valid, by cooking up a Kripke structure that provides a counterexample.

11.6 Modal Logics

fol:byd:mod:
sec

Consider the following example of a conditional sentence:

If Jeremy is alone in that room, then he is drunk and naked and
dancing on the chairs.

This is an example of a conditional assertion that may be materially true
but nonetheless misleading, since it seems to suggest that there is a stronger
link between the antecedent and conclusion other than simply that either the

first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY 179

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

antecedent is false or the consequent true. That is, the wording suggests that
the claim is not only true in this particular world (where it may be trivially true,
because Jeremy is not alone in the room), but that, moreover, the conclusion
would have been true had the antecedent been true. In other words, one can
take the assertion to mean that the claim is true not just in this world, but in
any “possible” world; or that it is necessarily true, as opposed to just true in
this particular world.

Modal logic was designed to make sense of this kind of necessity. One
obtains modal propositional logic from ordinary propositional logic by adding
a box operator; which is to say, if φ is a formula, so is □φ. Intuitively, □φ
asserts that φ is necessarily true, or true in any possible world. ♢φ is usually
taken to be an abbreviation for ¬□¬φ, and can be read as asserting that φ is
possibly true. Of course, modality can be added to predicate logic as well.

Kripke structures can be used to provide a semantics for modal logic; in
fact, Kripke first designed this semantics with modal logic in mind. Rather than
restricting to partial orders, more generally one has a set of “possible worlds,”
P , and a binary “accessibility” relation R(x, y) between worlds. Intuitively,
R(p, q) asserts that the world q is compatible with p; i.e., if we are “in” world p,
we have to entertain the possibility that the world could have been like q.

Modal logic is sometimes called an “intensional” logic, as opposed to an
“extensional” one. The intended semantics for an extensional logic, like classi-
cal logic, will only refer to a single world, the “actual” one; while the semantics
for an “intensional” logic relies on a more elaborate ontology. In addition to
structureing necessity, one can use modality to structure other linguistic con-
structions, reinterpreting □ and ♢ according to the application. For example:

1. In provability logic, □φ is read “φ is provable” and ♢φ is read “φ is
consistent.”

2. In epistemic logic, one might read □φ as “I know φ” or “I believe φ.”

3. In temporal logic, one can read □φ as “φ is always true” and ♢φ as “φ
is sometimes true.”

One would like to augment logic with rules and axioms dealing with modal-
ity. For example, the system S4 consists of the ordinary axioms and rules of
propositional logic, together with the following axioms:

□(φ→ ψ) → (□φ→□ψ)

□φ→ φ

□φ→□□φ

as well as a rule, “from φ conclude □φ.” S5 adds the following axiom:

♢φ→□♢φ

Variations of these axioms may be suitable for different applications; for ex-
ample, S5 is usually taken to characterize the notion of logical necessity. And

180 first-order-logic rev: d4e99d0 (2023-10-08) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

the nice thing is that one can usually find a semantics for which the derivation
system is sound and complete by restricting the accessibility relation in the
Kripke structures in natural ways. For example, S4 corresponds to the class
of Kripke structures in which the accessibility relation is reflexive and transi-
tive. S5 corresponds to the class of Kripke structures in which the accessibility
relation is universal, which is to say that every world is accessible from every
other; so □φ holds if and only if φ holds in every world.

11.7 Other Logics

fol:byd:oth:
sec

As you may have gathered by now, it is not hard to design a new logic. You
too can create your own a syntax, make up a deductive system, and fashion
a semantics to go with it. You might have to be a bit clever if you want
the derivation system to be complete for the semantics, and it might take
some effort to convince the world at large that your logic is truly interesting.
But, in return, you can enjoy hours of good, clean fun, exploring your logic’s
mathematical and computational properties.

Recent decades have witnessed a veritable explosion of formal logics. Fuzzy
logic is designed to model reasoning about vague properties. Probabilistic logic
is designed to model reasoning about uncertainty. Default logics and nonmono-
tonic logics are designed to model defeasible forms of reasoning, which is to say,
“reasonable” inferences that can later be overturned in the face of new informa-
tion. There are epistemic logics, designed to model reasoning about knowledge;
causal logics, designed to model reasoning about causal relationships; and even
“deontic” logics, which are designed to model reasoning about moral and ethi-
cal obligations. Depending on whether the primary motivation for introducing
these systems is philosophical, mathematical, or computational, you may find
such creatures studies under the rubric of mathematical logic, philosophical
logic, artificial intelligence, cognitive science, or elsewhere.

The list goes on and on, and the possibilities seem endless. We may never
attain Leibniz’ dream of reducing all of human reason to calculation—but that
can’t stop us from trying.

Photo Credits

181

Bibliography

Magnus, P. D., Tim Button, J. Robert Loftis, Aaron Thomas-Bolduc, Robert
Trueman, and Richard Zach. 2021. Forall x: Calgary. An Introduction to
Formal Logic. Calgary: Open Logic Project, f21 ed. URL https://forallx.

openlogicproject.org/.

Smullyan, Raymond M. 1968. First-Order Logic. New York, NY: Springer.
Corrected reprint, New York, NY: Dover, 1995.

Zuckerman, Martin M. 1973. Formation sequences for propositional formulas.
Notre Dame Journal of Formal Logic 14(1): 134–138.

182

https://forallx.openlogicproject.org/
https://forallx.openlogicproject.org/

	First-order Logic
	Introduction to First-Order Logic
	First-Order Logic
	Syntax
	Formulas
	Satisfaction
	Sentences
	Semantic Notions
	Substitution
	Models and Theories
	Soundness and Completeness

	Syntax of First-Order Logic
	Introduction
	First-Order Languages
	Terms and [rgb]0,.5,0Formulas
	Unique Readability
	[rgb]0,.5,0Main operator of a Formula
	[rgb]0,.5,0Subformulas
	Formation Sequences
	Free [rgb]0,.5,0Variables and [rgb]0,.5,0Sentences
	Substitution

	Semantics of First-Order Logic
	Introduction
	[rgb]0,.5,0Structures for First-order Languages
	Covered [rgb]0,.5,0Structures for First-order Languages
	Satisfaction of [rgb]0,.5,0a [rgb]0,.5,0Formula in [rgb]0,.5,0a [rgb]0,.5,0Structure
	Variable Assignments
	Extensionality
	Semantic Notions

	Theories and Their Models
	Introduction
	Expressing Properties of [rgb]0,.5,0Structures
	Examples of First-Order Theories
	Expressing Relations in [rgb]0,.5,0a [rgb]0,.5,0Structure
	The Theory of Sets
	Expressing the Size of [rgb]0,.5,0Structures

	Derivation Systems
	Introduction
	The Sequent Calculus
	Natural Deduction
	Tableaux
	Axiomatic Derivations

	The Sequent Calculus
	Rules and Derivations
	Propositional Rules
	Quantifier Rules
	Structural Rules
	Derivations
	Examples of Derivations
	Derivations with Quantifiers
	Proof-Theoretic Notions
	Derivability and Consistency
	Derivability and the Propositional Connectives
	Derivability and the Quantifiers
	Soundness
	Derivations with Identity predicate
	Soundness with Identity predicate

	Natural Deduction
	Rules and Derivations
	Propositional Rules
	Quantifier Rules
	Derivations
	Examples of Derivations
	Derivations with Quantifiers
	Proof-Theoretic Notions
	Derivability and Consistency
	Derivability and the Propositional Connectives
	Derivability and the Quantifiers
	Soundness
	Derivations with Identity predicate
	Soundness with Identity predicate

	Tableaux
	Rules and Tableaux
	Propositional Rules
	Quantifier Rules
	Tableaux
	Examples of Tableaux
	Tableaux with Quantifiers
	Proof-Theoretic Notions
	Derivability and Consistency
	Derivability and the Propositional Connectives
	Derivability and the Quantifiers
	Soundness
	Tableaux with Identity predicate
	Soundness with Identity predicate

	Axiomatic Derivations
	Rules and Derivations
	Axiom and Rules for the Propositional Connectives
	Axioms and Rules for Quantifiers
	Examples of Derivations
	Derivations with Quantifiers
	Proof-Theoretic Notions
	The Deduction Theorem
	The Deduction Theorem with Quantifiers
	Derivability and Consistency
	Derivability and the Propositional Connectives
	Derivability and the Quantifiers
	Soundness
	Derivations with Identity predicate

	The Completeness Theorem
	Introduction
	Outline of the Proof
	Complete Consistent Sets of Sentences
	Henkin Expansion
	Lindenbaum's Lemma
	Construction of a Model
	Identity
	The Completeness Theorem
	The Compactness Theorem
	A Direct Proof of the Compactness Theorem
	The Löwenheim-Skolem Theorem

	Beyond First-order Logic
	Overview
	Many-Sorted Logic
	Second-Order logic
	Higher-Order logic
	Intuitionistic Logic
	Modal Logics
	Other Logics

	Photo Credits
	Bibliography

