Lemma com.1 (Lindenbaum’s Lemma). Every consistent set Γ in a language L can be extended to a complete and consistent set Γ^*.

Proof. Let Γ be consistent. Let $\varphi_0, \varphi_1, \ldots$ be an enumeration of all the sentences of L. Define $\Gamma_0 = \Gamma$, and

$$
\Gamma_{n+1} = \begin{cases}
\Gamma_n \cup \{\varphi_n\} & \text{if } \Gamma_n \cup \{\varphi_n\} \text{ is consistent;} \\
\Gamma_n \cup \{\neg\varphi_n\} & \text{otherwise.}
\end{cases}
$$

Let $\Gamma^* = \bigcup_{n \geq 0} \Gamma_n$.

Each Γ_n is consistent: Γ_0 is consistent by definition. If $\Gamma_{n+1} = \Gamma_n \cup \{\varphi_n\}$, this is because the latter is consistent. If it isn’t, $\Gamma_{n+1} = \Gamma_n \cup \{\neg\varphi_n\}$. We have to verify that $\Gamma_n \cup \{\neg\varphi_n\}$ is consistent. Suppose it’s not. Then both $\Gamma_n \cup \{\varphi_n\}$ and $\Gamma_n \cup \{\neg\varphi_n\}$ are inconsistent. This means that Γ_n would be inconsistent by ??????????????, contrary to the induction hypothesis.

For every n and every $i < n$, $\Gamma_i \subseteq \Gamma_n$. This follows by a simple induction on n. For $n = 0$, there are no $i < 0$, so the claim holds automatically. For the inductive step, suppose it is true for n. We have $\Gamma_{n+1} = \Gamma_n \cup \{\varphi_n\}$ or $\Gamma_{n+1} = \Gamma_n \cup \{\neg\varphi_n\}$ by construction. So $\Gamma_n \subseteq \Gamma_{n+1}$. If $i < n$, then $\Gamma_i \subseteq \Gamma_n$ by inductive hypothesis, and so $\Gamma_i \subseteq \Gamma_{n+1}$ by transitivity of \subseteq.

From this it follows that every finite subset of Γ^* is a subset of Γ_n for some n, since each $\psi \in \Gamma^*$ not already in Γ_0 is added at some stage i. If n is the last one of these, then all ψ in the finite subset are in Γ_n. So, every finite subset of Γ^* is consistent. By ??????????????, Γ^* is consistent.

Every sentence of $\Frm(L)$ appears on the list used to define Γ^*. If $\varphi_n \notin \Gamma^*$, then that is because $\Gamma_n \cup \{\varphi_n\}$ was inconsistent. But then $\neg\varphi_n \in \Gamma^*$, so Γ^* is complete. \hfill \Box

Photo Credits

Bibliography