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com.l Introduction

The completeness theorem is one of the most fundamental results about logic.
It comes in two formulations, the equivalence of which we’ll prove. In its
first formulation it says something fundamental about the relationship between
semantic consequence and our derivation system: if a sentence ¢ follows from
some sentences I', then there is also a derivation that establishes I' - . Thus,
the derivation system is as strong as it can possibly be without proving things
that don’t actually follow.

In its second formulation, it can be stated as a model existence result: every
consistent set of sentences is satisfiable. Consistency is a proof-theoretic notion:
it says that our derivation system is unable to produce certain derivations. But
who’s to say that just because there are no derivations of a certain sort from I,
it’s guaranteed that there is a structure 91?7 Before the completeness theorem
was first proved—in fact before we had the derivation systems we now do—the
great German mathematician David Hilbert held the view that consistency of
mathematical theories guarantees the existence of the objects they are about.
He put it as follows in a letter to Gottlob Frege:

If the arbitrarily given axioms do not contradict one another with
all their consequences, then they are true and the things defined by
the axioms exist. This is for me the criterion of truth and existence.

Frege vehemently disagreed. The second formulation of the completeness the-
orem shows that Hilbert was right in at least the sense that if the axioms are
consistent, then some structure exists that makes them all true.

These aren’t the only reasons the completeness theorem—or rather, its
proof—is important. It has a number of important consequences, some of
which we’ll discuss separately. For instance, since any derivation that shows
I' F ¢ is finite and so can only use finitely many of the sentences in I', it follows
by the completeness theorem that if ¢ is a consequence of I, it is already a
consequence of a finite subset of I'. This is called compactness. Equivalently,
if every finite subset of I" is consistent, then I" itself must be consistent.

Although the compactness theorem follows from the completeness theorem
via the detour through derivations, it is also possible to use the the proof of the
completeness theorem to establish it directly. For what the proof does is take a
set of sentences with a certain property—consistency—and constructs a struc-
ture out of this set that has certain properties (in this case, that it satisfies
the set). Almost the very same construction can be used to directly establish
compactness, by starting from “finitely satisfiable” sets of sentences instead
of consistent ones. The construction also yields other consequences, e.g., that
any satisfiable set of sentences has a finite or denumerable model. (This re-
sult is called the Léwenheim-Skolem theorem.) In general, the construction of
structures from sets of sentences is used often in logic, and sometimes even in
philosophy.
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