byd.1 Many-Sorted Logic

fol:byd:msl: In first-order logic, variables and quantifiers range over a single domain. But
it is often useful to have multiple (disjoint) domains: for example, you might
want to have a domain of numbers, a domain of geometric objects, a domain

of functions from numbers to numbers, a domain of abelian groups, and so on.

Many-sorted logic provides this kind of framework. One starts with a list
of “sorts”—the “sort” of an object indicates the “domain” it is supposed to
inhabit. One then has variables and quantifiers for each sort, and (usually)
an identity predicate for each sort. Functions and relations are also “typed”
by the sorts of objects they can take as arguments. Otherwise, one keeps the
usual rules of first-order logic, with versions of the quantifier-rules repeated for
each sort.

For example, to study international relations we might choose a language
with two sorts of objects, French citizens and German citizens. We might have
a unary relation, “drinks wine,” for objects of the first sort; another unary
relation, “eats wurst,” for objects of the second sort; and a binary relation,
“forms a multinational married couple,” which takes two arguments, where
the first argument is of the first sort and the second argument is of the second
sort. If we use variables a, b, ¢ to range over French citizens and z, y, z to
range over German citizens, then

VaVz[(MarriedTo(a,x) — (DrinksWine(a) V =EatsWurst(z))]]

asserts that if any French person is married to a German, either the French
person drinks wine or the German doesn’t eat wurst.

Many-sorted logic can be embedded in first-order logic in a natural way,
by lumping all the objects of the many-sorted domains together into one first-
order domain, using unary predicate symbols to keep track of the sorts, and
relativizing quantifiers. For example, the first-order language corresponding
to the example above would have unary predicate symbols “German” and
“French,” in addition to the other relations described, with the sort require-
ments erased. A sorted quantifier YV ¢, where = is a variable of the German
sort, translates to

YV (German(z) — ¢).

We need to add axioms that insure that the sorts are separate—e.g., Vo =(German(z)A
French(z))—as well as axioms that guarantee that “drinks wine” only holds

of objects satisfying the predicate French(x), etc. With these conventions

and axioms, it is not difficult to show that many-sorted sentences translate

to first-order sentences, and many-sorted derivations translate to first-order
derivations. Also, many-sorted structures “translate” to corresponding first-

order structures and vice-versa, so we also have a completeness theorem for
many-sorted logic.



Photo Credits

Bibliography

2 many-sorted-logic rev: fOceba3 (2023-09-14) by OLP / CC-BY


https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

	Many-Sorted Logic
	Photo Credits
	Bibliography

