byd.1 Higher-Order logic

Passing from first-order logic to second-order logic enabled us to talk about sets of objects in the first-order domain, within the formal language. Why stop there? For example, third-order logic should enable us to deal with sets of sets of objects, or perhaps even sets which contain both objects and sets of objects. And fourth-order logic will let us talk about sets of objects of that kind. As you may have guessed, one can iterate this idea arbitrarily.

In practice, higher-order logic is often formulated in terms of functions instead of relations. (Modulo the natural identifications, this difference is inessential.) Given some basic “sorts” A, B, C, \ldots (which we will now call “types”), we can create new ones by stipulating

If σ and τ are finite types then so is $\sigma \rightarrow \tau$.

Think of types as syntactic “labels,” which classify the objects we want in our domain: $\sigma \rightarrow \tau$ describes those objects that are functions which take objects of type σ to objects of type τ. For example, we might want to have a type Ω of truth values, “true” and “false,” and a type \mathbb{N} of natural numbers. In that case, you can think of objects of type $\mathbb{N} \rightarrow \Omega$ as unary relations, or subsets of \mathbb{N}; objects of type $\mathbb{N} \rightarrow \mathbb{N}$ are functions from natural numbers to natural numbers; and objects of type $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ are “functionals,” that is, higher-type functions that take functions to numbers.

As in the case of second-order logic, one can think of higher-order logic as a kind of many-sorted logic, where there is a sort for each type of object we want to consider. But it is usually clearer just to define the syntax of higher-type logic from the ground up. For example, we can define a set of finite types inductively, as follows:

1. \mathbb{N} is a finite type.
2. If σ and τ are finite types, then so is $\sigma \rightarrow \tau$.
3. If σ and τ are finite types, so is $\sigma \times \tau$.

Intuitively, \mathbb{N} denotes the type of the natural numbers, $\sigma \rightarrow \tau$ denotes the type of functions from σ to τ, and $\sigma \times \tau$ denotes the type of pairs of objects, one from σ and one from τ. We can then define a set of terms inductively, as follows:

1. For each type σ, there is a stock of variables x, y, z, \ldots of type σ
2. $\mathbf{0}$ is a term of type \mathbb{N}
3. \mathbf{S} (successor) is a term of type $\mathbb{N} \rightarrow \mathbb{N}$
4. If s is a term of type σ, and t is a term of type $\mathbb{N} \rightarrow (\sigma \rightarrow \sigma)$, then R_{st} is a term of type $\mathbb{N} \rightarrow \sigma$
5. If s is a term of type $\tau \rightarrow \sigma$ and t is a term of type τ, then $s(t)$ is a term of type σ.

6. If s is a term of type σ and x is a variable of type τ, then $\lambda x. s$ is a term of type $\tau \rightarrow \sigma$.

7. If s is a term of type σ and t is a term of type τ, then $\langle s, t \rangle$ is a term of type $\sigma \times \tau$.

8. If s is a term of type $\sigma \times \tau$ then $p_1(s)$ is a term of type σ and $p_2(s)$ is a term of type τ.

Intuitively, R_{st} denotes the function defined recursively by

\[
R_{st}(0) = s \\
R_{st}(x + 1) = t(x, R_{st}(x)),
\]

$\langle s, t \rangle$ denotes the pair whose first component is s and whose second component is t, and $p_1(s)$ and $p_2(s)$ denote the first and second elements ("projections") of s. Finally, $\lambda x. s$ denotes the function f defined by

\[
f(x) = s
\]

for any x of type σ; so item (6) gives us a form of comprehension, enabling us to define functions using terms. Formulas are built up from identity predicate statements $s = t$ between terms of the same type, the usual propositional connectives, and higher-type quantification. One can then take the axioms of the system to be the basic equations governing the terms defined above, together with the usual rules of logic with quantifiers and identity predicate.

If one augments the finite type system with a type Ω of truth values, one has to include axioms which govern its use as well. In fact, if one is clever, one can get rid of complex formulas entirely, replacing them with terms of type Ω! The proof system can then be modified accordingly. The result is essentially the simple theory of types set forth by Alonzo Church in the 1930s.

As in the case of second-order logic, there are different versions of higher-type semantics that one might want to use. In the full version, variables of type $\sigma \rightarrow \tau$ range over the set of all functions from the objects of type σ to objects of type τ. As you might expect, this semantics is too strong to admit a complete, effective proof system. But one can consider a weaker semantics, in which a structure consists of sets of elements T_τ for each type τ, together with appropriate operations for application, projection, etc. If the details are carried out correctly, one can obtain completeness theorems for the kinds of proof systems described above.

Higher-type logic is attractive because it provides a framework in which we can embed a good deal of mathematics in a natural way: starting with \mathbb{N}, one can define real numbers, continuous functions, and so on. It is also particularly attractive in the context of intuitionistic logic, since the types have clear “constructive” interpretations. In fact, one can develop constructive
versions of higher-type semantics (based on intuitionistic, rather than classical
logic) that clarify these constructive interpretations quite nicely, and are, in
many ways, more interesting than the classical counterparts.

Photo Credits

Bibliography