axd.1 Rules and Derivations

Axiomatic derivations are perhaps the simplest proof system for logic. A derivation is just a sequence of formulas. To count as a derivation, every formula in the sequence must either be an instance of an axiom, or must follow from one or more formulas that precede it in the sequence by a rule of inference. A derivation derives its last formula.

Definition axd.1 (Derivability). If \(\Gamma \) is a set of formulas of \(\mathcal{L} \) then a derivation from \(\Gamma \) is a finite sequence \(\varphi_1, \ldots, \varphi_n \) of formulas where for each \(i \leq n \) one of the following holds:

1. \(\varphi_i \in \Gamma \); or
2. \(\varphi_i \) is an axiom; or
3. \(\varphi_i \) follows from some \(\varphi_j \) (and \(\varphi_k \)) with \(j < i \) (and \(k < i \)) by a rule of inference.

What counts as a correct derivation depends on which inference rules we allow (and of course what we take to be axioms). And an inference rule is an if-then statement that tells us that, under certain conditions, a step \(A_i \) in is a correct inference step.

Definition axd.2 (Rule of inference). A rule of inference gives a sufficient condition for what counts as a correct inference step in a derivation from \(\Gamma \).

For instance, since any one-element sequence \(\varphi \) with \(\varphi \in \Gamma \) trivially counts as a derivation, the following might be a very simple rule of inference:

If \(\varphi \in \Gamma \), then \(\varphi \) is always a correct inference step in any derivation from \(\Gamma \).

Similarly, if \(\varphi \) is one of the axioms, then \(\varphi \) by itself is a derivation, and so this is also a rule of inference:

If \(\varphi \) is an axiom, then \(\varphi \) is a correct inference step.

It gets more interesting if the rule of inference appeals to formulas that appear before the step considered. The following rule is called *modus ponens*:

If \(\psi \rightarrow \varphi \) and \(\psi \) occur higher up in the derivation, then \(\varphi \) is a correct inference step.

If this is the only rule of inference, then our definition of derivation above amounts to this: \(\varphi_1, \ldots, \varphi_n \) is a derivation iff for each \(i \leq n \) one of the following holds:

1. \(\varphi_i \in \Gamma \); or
2. \(\varphi_i \) is an axiom; or
3. for some \(j < i \), \(\varphi_j \) is \(\psi \rightarrow \varphi_i \), and for some \(k < i \), \(\varphi_k \) is \(\psi \).

The last clause says that \(\varphi_i \) follows from \(\varphi_j (\psi) \) and \(\varphi_k (\psi \rightarrow \varphi_i) \) by modus ponens. If we can go from 1 to \(n \), and each time we find a formula \(\varphi_i \) that is either in \(\Gamma \), an axiom, or which a rule of inference tells us that it is a correct inference step, then the entire sequence counts as a correct derivation.

Definition axd.3 (Derivability). A formula \(\varphi \) is *derivable* from \(\Gamma \), written \(\Gamma \vdash \varphi \), if there is a derivation from \(\Gamma \) ending in \(\varphi \).

Definition axd.4 (Theorems). A formula \(\varphi \) is a *theorem* if there is a derivation of \(\varphi \) from the empty set. We write \(\vdash \varphi \) if \(\varphi \) is a theorem and \(\nvdash \varphi \) if it is not.

Photo Credits

Bibliography