axd.1 Derivations with Quantifiers

fol:axd:prq: sec

Example axd.1. Let us give a derivation of $(\forall x \, \varphi(x) \land \forall y \, \psi(y)) \rightarrow \forall x \, (\varphi(x) \land \psi(x)).$

First, note that

$$(\forall x \, \varphi(x) \land \forall y \, \psi(y)) \to \forall x \, \varphi(x)$$

is an instance of ??, and

$$\forall x \, \varphi(x) \to \varphi(a)$$

of ??. So, by ??, we know that

$$(\forall x \,\varphi(x) \land \forall y \,\psi(y)) \to \varphi(a)$$

is derivable. Likewise, since

$$(\forall x \, \varphi(x) \land \forall y \, \psi(y)) \to \forall y \, \psi(y)$$
 and
 $\forall y \, \psi(y) \to \psi(a)$

are instances of ?? and ??, respectively,

$$(\forall x \, \varphi(x) \land \forall y \, \psi(y)) \to \psi(a)$$

is derivable by $\ref{eq:model}$. Using an appropriate instance of $\ref{eq:model}$ and two applications of MP, we see that

 $(\forall x \, \varphi(x) \land \forall y \, \psi(y)) \to (\varphi(a) \land \psi(a))$

is derivable. We can now apply QR to obtain

$$(\forall x \, \varphi(x) \land \forall y \, \psi(y)) \to \forall x \, (\varphi(x) \land \psi(x)).$$

Photo Credits

Bibliography