axd.1 Derivability and the Quantifiers

The completeness theorem also requires that axiomatic deductions yield the facts about \(\vdash \) established in this section.

Theorem axd.1. If \(c \) is a constant symbol not occurring in \(\Gamma \) or \(\varphi(x) \) and \(\Gamma \vdash \varphi(c) \), then \(\Gamma \vdash \forall x \varphi(x) \).

Proof. By the deduction theorem, \(\Gamma \vdash \top \rightarrow \varphi(c) \). Since \(c \) does not occur in \(\Gamma \) or \(\top \), we get \(\Gamma \vdash \top \rightarrow \varphi(c) \). By the deduction theorem again, \(\Gamma \vdash \forall x \varphi(x) \). \(\square \)

Proposition axd.2.

1. \(\varphi(t) \vdash \exists x \varphi(x) \).
2. \(\forall x \varphi(x) \vdash \varphi(t) \).

Proof.

1. By ?? and the deduction theorem.
2. By ?? and the deduction theorem. \(\square \)

Photo Credits

Bibliography