We will now establish a number of properties of the derivability relation. They are independently interesting, but each will play a role in the proof of the completeness theorem.

Proposition axd.1. If $\Gamma \vdash \varphi$ and $\Gamma \cup \{ \varphi \}$ is inconsistent, then Γ is inconsistent.

Proof. If $\Gamma \cup \{ \varphi \}$ is inconsistent, then $\Gamma \cup \{ \varphi \} \vdash \bot$. By φ, $\Gamma \vdash \psi$ for every $\psi \in \Gamma$. Since also $\Gamma \vdash \varphi$ by hypothesis, $\Gamma \vdash \psi$ for every $\psi \in \Gamma \cup \{ \varphi \}$. By ψ, $\Gamma \vdash \bot$, i.e., Γ is inconsistent.

Proposition axd.2. $\Gamma \vdash \varphi$ iff $\Gamma \cup \{ \lnot \varphi \}$ is inconsistent.

Proof. First suppose $\Gamma \vdash \varphi$. Then $\Gamma \cup \{ \lnot \varphi \} \vdash \varphi$ by φ. $\Gamma \cup \{ \lnot \varphi \} \vdash \lnot \varphi$ by $\lnot \varphi$. We also have $\vdash \lnot \varphi \rightarrow (\varphi \rightarrow \bot)$ by φ. So by two applications of φ, we have $\Gamma \vdash \bot$.

Now assume $\Gamma \cup \{ \lnot \varphi \}$ is inconsistent, i.e., $\Gamma \cup \{ \lnot \varphi \} \vdash \bot$. By the deduction theorem, $\Gamma \vdash \lnot \varphi \rightarrow \bot$. $\Gamma \vdash (\lnot \varphi \rightarrow \bot) \rightarrow \lnot \varphi$ by \bot, so $\Gamma \vdash \lnot \varphi$ by \bot. Since $\Gamma \vdash \lnot \varphi \rightarrow \varphi$ (?), we have $\Gamma \vdash \varphi$ by \bot again.

Problem axd.1. Prove that $\Gamma \vdash \lnot \varphi$ iff $\Gamma \cup \{ \varphi \}$ is inconsistent.

Proposition axd.3. If $\Gamma \vdash \varphi$ and $\lnot \varphi \in \Gamma$, then Γ is inconsistent.

Proof. $\Gamma \vdash \lnot \varphi \rightarrow (\varphi \rightarrow \bot)$ by \bot. $\Gamma \vdash \bot$ by two applications of \bot.

Proposition axd.4. If $\Gamma \cup \{ \varphi \}$ and $\Gamma \cup \{ \lnot \varphi \}$ are both inconsistent, then Γ is inconsistent.

Proof. Exercise.

Problem axd.2. Prove Proposition axd.4

Photo Credits

Bibliography