Derivations with Identity predicate

In order to accommodate $=$ in derivations, we simply add new axiom schemas. The definition of derivation and \vdash remains the same, we just also allow the new axioms.

Definition axd.1 (Axioms for identity predicate).

\[
\begin{align*}
\text{ax:id1} & : t = t, & (1) \\
\text{ax:id2} & : t_1 = t_2 \rightarrow (\psi(t_1) \rightarrow \psi(t_2)), & (2)
\end{align*}
\]

for any ground terms t, t_1, t_2.

Proposition axd.2. The axioms eq. (1) and eq. (2) are valid.

Proof. Exercise.

Problem axd.1. Prove Proposition axd.2.

Proposition axd.3. $\Gamma \vdash t = t$, for any term t and set Γ.

Proposition axd.4. If $\Gamma \vdash \varphi(t_1)$ and $\Gamma \vdash t_1 = t_2$, then $\Gamma \vdash \varphi(t_2)$.

Proof. The formula

\[(t_1 = t_2 \rightarrow (\varphi(t_1) \rightarrow \varphi(t_2)))\]

is an instance of eq. (2). The conclusion follows by two applications of MP.

Photo Credits

Bibliography