Theorem axd.1 (Deduction Theorem). If $\Gamma \cup \{\varphi\} \vdash \psi$, then $\Gamma \vdash \varphi \rightarrow \psi$.

Proof. We again proceed by induction on the length of the derivation of ψ from $\Gamma \cup \{\varphi\}$.

The proof of the induction basis is identical to that in the proof of ??.

For the inductive step, suppose again that the derivation of ψ from $\Gamma \cup \{\varphi\}$ ends with a step ψ which is justified by an inference rule. If the inference rule is modus ponens, we proceed as in the proof of ??.

If the inference rule is qr, we know that $\psi \equiv \chi \rightarrow \forall x \theta(x)$ and a formula of the form $\chi \rightarrow \theta(a)$ appears earlier in the derivation, where a does not occur in χ, φ, or Γ. We thus have that

$$\Gamma \cup \{\varphi\} \vdash \chi \rightarrow \theta(a),$$

and the induction hypothesis applies, i.e., we have that

$$\Gamma \vdash \varphi \rightarrow (\chi \rightarrow \theta(a)).$$

By

$$\vdash (\varphi \rightarrow (\chi \rightarrow \theta(a))) \rightarrow ((\varphi \land \chi) \rightarrow \theta(a))$$

and modus ponens we get

$$\Gamma \vdash (\varphi \land \chi) \rightarrow \theta(a).$$

Since the eigenvariable condition still applies, we can add a step to this derivation justified by qr, and get

$$\Gamma \vdash (\varphi \land \chi) \rightarrow \forall x \theta(x).$$

We also have

$$\vdash ((\varphi \land \chi) \rightarrow \forall x \theta(x)) \rightarrow (\varphi \rightarrow (\chi \rightarrow \forall x \theta(x))),$$

so by modus ponens,

$$\Gamma \vdash \varphi \rightarrow (\chi \rightarrow \forall x \theta(x)),$$

i.e., $\Gamma \vdash \psi$.

We leave the case where ψ is justified by the rule qr, but is of the form $\exists x \theta(x) \rightarrow \chi$, as an exercise. \square

Problem axd.1. Complete the proof of Theorem axd.1.
Photo Credits

Bibliography