A counterfactual $\varphi \rightarrow \psi$ is (non-vacuously) true if the closest φ-worlds are all ψ-worlds, as depicted in Figure 1. A counterfactual is also true at w if the system of spheres around w has no φ-admitting spheres at all. In that case it is vacuously true (see Figure 2).

It can be false in two ways. One way is if the closest φ-worlds are not all ψ-worlds, but some of them are. In this case, $\varphi \rightarrow \neg \psi$ is also false (see Figure 3). If the closest φ-worlds do not overlap with the ψ-worlds at all, then $\varphi \rightarrow \psi$. But, in this case all the closest φ-worlds are $\neg \psi$-worlds, and so $\varphi \rightarrow \neg \psi$ is true (see Figure 4).

In contrast to the strict conditional, counterfactuals may be contingent. Consider the sphere model in Figure 5. The φ-worlds closest to u are all ψ-worlds, so $\mathcal{M}, u \models \varphi \rightarrow \psi$. But there are φ-worlds closest to v which are not ψ-worlds, so $\mathcal{M}, v \not\models \varphi \rightarrow \psi$.

min.1 Truth and Falsity of Counterfactuals
Figure 3: False counterfactual, false opposite

Figure 4: False counterfactual, true opposite

Figure 5: Contingent counterfactual
Photo Credits

Bibliography