int.1 The Material Conditional

In its simplest form in English, a conditional is a sentence of the form “If . . . then . . . ,” where the . . . are themselves sentences, such as “If the butler did it, then the gardener is innocent.” In introductory logic courses, we learn to symbolize conditionals using the \rightarrow connective: symbolize the parts indicated by . . . , e.g., by formulas φ and ψ, and the entire conditional is symbolized by $\varphi \rightarrow \psi$.

The connective \rightarrow is truth-functional, i.e., the truth value—T or F—of $\varphi \rightarrow \psi$ is determined by the truth values of φ and ψ: $\varphi \rightarrow \psi$ is true iff φ is false or ψ is true, and false otherwise. Relative to a truth value assignment v, we define $v \models \varphi \rightarrow \psi$ iff $v \not\models \varphi$ or $v \models \psi$. The connective \rightarrow with this semantics is called the material conditional.

This definition results in a number of elementary logical facts. First of all, the deduction theorem holds for the material conditional:

If $\Gamma, \varphi \models \psi$ then $\Gamma \models \varphi \rightarrow \psi$

It is truth-functional: $\varphi \rightarrow \psi$ and $\neg \varphi \lor \psi$ are equivalent:

$\varphi \rightarrow \psi \models \neg \varphi \lor \psi$

$\neg \varphi \lor \psi \models \varphi \rightarrow \psi$

A material conditional is entailed by its consequent and by the negation of its antecedent:

$\psi \models \varphi \rightarrow \psi$

$\neg \varphi \models \varphi \rightarrow \psi$

A false material conditional is equivalent to the conjunction of its antecedent and the negation of its consequent: if $\varphi \rightarrow \psi$ is false, $\varphi \land \neg \psi$ is true, and vice versa:

$\neg (\varphi \rightarrow \psi) \models \varphi \land \neg \psi$

$\varphi \land \neg \psi \models \neg (\varphi \rightarrow \psi)$

The material conditional supports modus ponens:

$\varphi, \varphi \rightarrow \psi \models \psi$

The material conditional agglomerates:

$\varphi \rightarrow \psi, \varphi \rightarrow \chi \models \varphi \rightarrow (\psi \land \chi)$

We can always strengthen the antecedent, i.e., the conditional is monotonic:

$\varphi \rightarrow \psi \models (\varphi \land \chi) \rightarrow \psi$

material-conditional rev. c9d2ed6 (2023-09-14) by OLP / CC–BY
The material conditional is transitive, i.e., the chain rule is valid:

\[\varphi \to \psi, \psi \to \chi \models \varphi \to \chi \]

(11)

The material conditional is equivalent to its contrapositive:

\[\varphi \to \psi \models \neg \psi \to \neg \varphi \]

(12)

\[\neg \psi \to \neg \varphi \models \varphi \to \psi \]

(13)

These are all useful and unproblematic inferences in mathematical reasoning. However, the philosophical and linguistic literature is replete with purported counterexamples to the equivalent inferences in non-mathematical contexts. These suggest that the material conditional \(\to \) is not—or at least not always—the appropriate connective to use when symbolizing English “if \ldots \text{then} \ldots ” statements.

Photo Credits

Bibliography