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Introduction

int.1 The Material Conditional
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In its simplest form in English, a conditional is a sentence of the form “If
. . . then . . . ,” where the . . . are themselves sentences, such as “If the butler
did it, then the gardener is innocent.” In introductory logic courses, we earn to
symbolize conditionals using the → connective: symbolize the parts indicated
by . . . , e.g., by formulas ϕ and ψ, and the entire conditional is symbolized by
ϕ→ ψ.

The connective → is truth-functional, i.e., the truth value—T or F—of ϕ→ψ
is determined by the truth values of ϕ and ψ: ϕ→ψ is true iff ϕ is false or ψ is
true, and false otherwise. Relative to a truth value assignment v, we define
v � ϕ→ ψ iff v 2 ϕ or v � ψ. The connective → with this semantics is called
the material conditional.

This definition results in a number of elementary logical facts. First of all,
the deduction theorem holds for the material conditional:

If Γ, ϕ � ψ then Γ � ϕ→ ψ (int.1)

It is truth-functional: ϕ→ ψ and ¬ϕ ∨ ψ are equivalent:

ϕ→ ψ � ¬ϕ ∨ ψ (int.2)

¬ϕ ∨ ψ � ϕ→ ψ (int.3)

A material conditional is entailed by its consequent and by the negation of its
antecedent:

ψ � ϕ→ ψ (int.4)

¬ϕ � ϕ→ ψ (int.5)
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A false material conditional is equivalent to the conjunction of its antecedent
and the negation of its consequent: if ϕ→ ψ is false, ϕ ∧ ¬ψ is true, and vice
versa:

¬(ϕ→ ψ) � ϕ ∧ ¬ψ (int.6)

ϕ ∧ ¬ψ � ¬(ϕ→ ψ) (int.7)

The material conditional supports modus ponens:

ϕ,ϕ→ ψ � ψ (int.8)

The material conditional agglomerates:

ϕ→ ψ,ϕ→ χ � ϕ→ (ψ ∧ χ) (int.9)

We can always strengthen the antecedent, i.e., the conditional is monotonic:

ϕ→ ψ � (ϕ ∧ χ) → ψ (int.10)

The material conditional is transitive, i.e., the chain rule is valid:

ϕ→ ψ,ψ→ χ � ϕ→ χ (int.11)

The material conditional is equivalent to its contrapositive:

ϕ→ ψ � ¬ψ→¬ϕ (int.12)

¬ψ→¬ϕ � ϕ→ ψ (int.13)

These are all useful and unproblematic inferences in mathematical rea-
soning. However, the philosophical and linguistic literature is replete with
purported counterexamples to the equivalent inferences in non-mathematical
contexts. These suggest that the material conditional → is not—or at least
not always—the appropriate connective to use when symbolizing English “if
. . . then . . . ” statements.

int.2 Paradoxes of the Material Conditional
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One of the first to criticize the use of ϕ→ψ as a way to symbolize “if . . . then
. . . ” statements of English was C. I. Lewis. Lewis was criticizing the use
of the material condition in Whitehead and Russell’s Principia Mathematica,
who pronounced → as “implies.” Lewis rightly complained that if → meant
“implies,” then any false proposition p implies that p implies q, since p→(p→q)
is true if p is false, and that any true proposition q implies that p implies q,
since q→ (p→ q) is true if q is true.

Logicians of course know that implication, i.e., logical entailment, is not a
connective but a relation between formulas or statements. So we should just

2 introduction rev: ee4902c (2018-12-01) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


not read → as “implies” to avoid confusion.1 As long as we don’t, the particular
worry that Lewis had simply does not arise: p does not “imply” q even if we
think of p as standing for a false English sentence. To determine if p � q we
must consider all valuations, and p 2 q even when we use p to symbolize a
sentence which happens to be false.

But there is still something odd about “if . . . then. . . ” statements such as
Lewis’s

If the moon is made of green cheese, then 2 + 2 = 4.

and about the inferences

The moon is not made of green cheese. Therefore, if the moon is
made of green cheese, then 2 + 2 = 4.

2 + 2 = 4. Therefore, if the moon is made of green cheese, then
2 + 2 = 4.

Yet, if “if . . . then . . . ” were just →, the sentence would be unproblematically
true, and the inferences unproblematically valid.

Another example of concerns the tautology (ϕ→ψ)∨ (ψ→ϕ). This would
suggest that if you take two indicative sentences S and T from the newspaper
at random, the sentence “If S then T , or if T then S” should be true.

int.3 The Strict Conditional
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Lewis introduced the strict conditional J and argued that it, not the mate-
rial conditional, corresponds to implication. In alethic modal logic, ϕ J ψ can
be defined as �(ϕ→ ψ). A strict conditional is thus true (at a world) iff the
corresponding material conditional is necessary.

How does the strict conditional fare vis-a-vis the paradoxes of the material
conditional? A strict conditional with a false antecedent and one with a true
consequent, may be true, or it may be false. Moreover, (ϕ J ψ) ∨ (ψ J ϕ) is
not valid. The strict conditional ϕ J ψ is also not equivalent to ¬ϕ ∨ ψ, so it
is not truth functional.

We have:

ϕ J ψ � ¬ϕ ∨ ψ but: (int.14)

¬ϕ ∨ ψ 2 ϕ J ψ (int.15)

ψ 2 ϕ J ψ (int.16)

¬ϕ 2 ϕ J ψ (int.17)

¬(ϕ→ ψ) 2 ϕ ∧ ¬ψ but: (int.18)

ϕ ∧ ¬ψ � ¬(ϕ J ψ) (int.19)

1Reading “→” as “implies” is still widely practised by mathematicians and computer
scientists, although philosophers try to avoid the confusions Lewis highlighted by pronouncing
it as “only if.”
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However, the strict conditional still supports modus ponens:

ϕ,ϕ J ψ � ψ (int.20)

The strict conditional agglomerates:

ϕ J ψ,ϕ J χ � ϕ J (ψ ∧ χ) (int.21)

Antecedent strengthening holds for the strict conditional:

ϕ J ψ � (ϕ ∧ χ) J ψ (int.22)

The strict conditional is also transitive:

ϕ J ψ,ψ J χ � ϕ J χ (int.23)

Finally, the strict conditional is equivalent to its contrapositive:

ϕ J ψ � ¬ψ J ¬ϕ (int.24)

¬ψ J ¬ϕ � ϕ J ψ (int.25)

Problem int.1. Give S5-counterexamples to the entailment relations which
do not hold for the strict conditional, i.e., for:

1. ¬p 2 �(p→ q)

2. q 2 �(p→ q)

3. ¬�(p→ q) 2 p ∧ ¬q

4. 2 �(p→ q) ∨�(q→ p)

Problem int.2. Show that the valid entailment relations hold for the strict
conditional by giving S5-proofs of:

1. �(ϕ→ ψ) � ¬ϕ ∨ ψ

2. ϕ ∧ ¬ψ � ¬�(ϕ→ ψ)

3. ϕ,�(ϕ→ ψ) � ψ

4. �(ϕ→ ψ),�(ϕ→ χ) � �(ϕ→ (ψ ∧ χ))

5. �(ϕ→ ψ) � �((ϕ ∧ χ) → ψ)

6. �(ϕ→ ψ),�(ψ→ χ) � �(ϕ→ χ)

7. �(ϕ→ ψ) � �(¬ψ→¬ϕ)

8. �(¬ψ→¬ϕ) � �(ϕ→ ψ)
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However, the strict conditional still has its own “paradoxes.” Just as a
material conditional with a false antecedent or a true consequent is true, a strict
conditional with a necessarily false antecedent or a necessarily true consequent
is true. Moreover, any true strict conditional is necessarily true, and any false
strict conditional is necessarily false. In other words, we have

�ϕ � ϕ J ψ (int.26)

�¬ψ � ϕ J ψ (int.27)

ϕ J ψ � �(ϕ J ψ) (int.28)

¬(ϕ J ψ) � �¬(ϕ J ψ) (int.29)

These are not problems if you think of J as “implies.” Logical entailment
relationships are, after all, mathematical facts and so can’t be contingent. But
they do raise issues if you want to use J as a logical connective that is supposed
to capture “if . . . then . . . ,” especially the last two. For surely there are “if
. . . then . . . ” statements that are contingently true or contingently false—in
fact, they generally are neither necessary nor impossible.

Problem int.3. Give proofs in S5 of:

1. �¬ψ � ϕ J ψ

2. ϕ J ψ � �(ϕ J ψ)

3. ¬(ϕ J ψ) � �¬(ϕ J ψ)

Use the definition of J to do so.

int.4 Counterfactuals
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A very common and important form of “if . . . then . . . ” constructions in
English are built using the past subjunctive form of to be: “if it were the case
that . . . then it would be the case that . . . ” Because usually the antecedent
of such a conditional is false, i.e., counter to fact, they are called counterfac-
tual conditionals (and because they use the subjunctive form of to be, also
subjunctive conditionals. They are distinguished from indicative conditionals
which take the form of “if it is the case that . . . then it is the case that . . . ”
Counterfactual and indicative conditionals differ in truth conditions. Consider
Adams’s famous example:

If Oswald didn’t kill Kennedy, someone else did.

If Oswald hadn’t killed Kennedy, someone else would have.

The first is indicative, the second counterfactual. The first is clearly true: we
know JFK was killed by someone, and if that someone wasn’t (contrary to the
Warren Report) Lee Harvey Oswald, then someone else killed JFK. The second
one says something different. It claims that if Oswald hadn’t killed Kennedy,
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i.e., if the Dallas shooting had been avoided or had been unsuccessful, history
would have subsequently unfolded in such a way that another assassination
would have been successful. In order for it to be true, it would have to be the
case that powerful forces had conspired to ensure JFK’s death (as many JFK
conspiracy theorists believe).

It is a live debate whether the indicative conditional is correctly captured
by the material conditional, in particular, whether the paradoxes of the mate-
rial conditional can be “explained” in a way that is compatible with it giving
the truth conditions for English indicative conditionals. By contrast, it is un-
controversial that counterfactual conditionals cannot be symbolized correctly
by the material conditionals. That is clear because, even though generally the
antecedents of counterfactuals are false, not all counterfactuals with false an-
tecedents are true—for instance, if you believe the Warren Report, and there
was no conspiracy to assassinate JFK, then Adams’s counterfactual conditional
is an example.

Counterfactual conditionals play an important role in causal reasoning: a
prime example of the use of counterfactuals is to express causal relationships.
E.g., striking a match causes it to light, and you can express this by saying
“if this match were struck, it would light.” Material, and generally indicative
conditionals, cannot be used to express this: “the match is struck → the match
lights” is true if the match is never struck, regardless of what would happen if
it were. Even worse, “the match is struck → the match turns into a bouquet
of flowers” is also true if it is never struck, but the match would certainly not
turn into a bouquet of flowers if it were struck.

It is still debated What exactly the correct logic of counterfactuals is. An
influential analysis of counterfactuals was given by Stalnaker and Lewis. Ac-
cording to them, a counterfactual “if it were the case that S then it would be
the case that T” is true iff T is true in the counterfactual situation (“possible
world”) that is closest to the way the actual world is and where S is true.
This is called an “ontic” analysis, since it makes reference to an ontology of
possible worlds. Other analyses make use of conditional probabilities or the-
ories of belief revision. There is a proliferation of different proposed logics of
counterfactuals. There isn’t even a single Lewis-Stalnaker logic of counterfac-
tuals: even though Stalnaker and Lewis proposed accounts along similar lines
with reference to closest possible worlds, the assumptions they made result in
different valid inferences.
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