rec.1 Primes

Bounded quantification and bounded minimization provide us with a good deal of machinery to show that natural functions and relations are primitive recursive. For example, consider the relation relation “x divides y”, written $x \mid y$. $x \mid y$ holds if division of x by y is possible without remainder, i.e., if y is an integer multiple of x. (If it doesn’t hold, i.e., the remainder when dividing x by y is > 0, we write $x \nmid y$.) In other words, $x \mid y$ holds if for some z, $x \cdot z = y$. We can define the relation $x \mid y$ by bounded existential quantification from $=$ and multiplication by $x \mid y \iff (\exists z \leq y) (x \cdot z) = y$.

We’ve thus shown that $x \mid y$ is primitive recursive.

A natural number x is prime if it is neither 0 nor 1 and is only divisible by 1 and itself. In other words, prime numbers are such that, whenever $y \mid x$, either $y = 1$ or $y = x$. To test if x is prime, we only have to check if $y \mid x$ for all $y \leq x$, since if $y > x$, then automatically $y \nmid x$. So, the relation Prime(x), which holds iff x is prime, can be defined by

$$\text{Prime}(x) \iff x \geq 2 \land (\forall y \leq x) (y \mid x \rightarrow y = 1 \lor y = x)$$

and is thus primitive recursive.

The primes are 2, 3, 5, 7, 11, etc. Consider the function $p(x)$ which returns the xth prime in that sequence, i.e., $p(0) = 2$, $p(1) = 3$, $p(2) = 5$, etc. (For convenience we will often write $p(x)$ as p_x $(p_0 = 2, p_1 = 3$, etc.)

If we had a function nextPrime(x), which returns the first prime number larger than x, p can be easily defined using primitive recursion:

$$p(0) = 2$$
$$p(x + 1) = \text{nextPrime}(p(x))$$

Since nextPrime(x) is the least y such that $y > x$ and y is prime, it can be easily computed by unbounded search. But it can also be defined by bounded minimization, thanks to a result due to Euclid: there is always a prime number between x and $x! + 1$.

$$\text{nextPrime}(x) = (\min y \leq x! + 1) (y > x \land \text{Prime}(y)).$$

This shows, that nextPrime(x) and hence $p(x)$ are (not just computable but) primitive recursive.

(If you’re curious, here’s a quick proof of Euclid’s theorem. Suppose p_n is the largest prime $\leq x$ and consider the product $p = p_0 \cdot p_1 \cdots \cdot p_n$ of all primes $\leq x$. Either $p + 1$ is prime or there is a prime between x and $p + 1$. Why? Suppose $p + 1$ is not prime. Then some prime number $q \mid p + 1$ where $q < p + 1$. None of the primes $\leq x$ divide $p + 1$. (By definition of p, each of the primes...
primes \(p_i \leq x \) divides \(p \), i.e., with remainder 0. So, each of the primes \(p_i \leq x \) divides \(p + 1 \) with remainder 1, and so \(p_i \not| p + 1 \). Hence, \(q \) is a prime \(> x \) and \(< p + 1 \). And \(p \leq x! \), so there is a prime \(> x \) and \(\leq x! + 1 \).

Problem rec.1. Define integer division \(d(x, y) \) using bounded minimization.

Photo Credits

Bibliography