
rec.1 Primitive Recursion Functions

cmp:rec:prf:
sec

Let us record again how we can define new functions from existing ones
using primitive recursion and composition.

Definition rec.1.cmp:rec:prf:

defn:primitive-recursion

Suppose f is a k-place function (k ≥ 1) and g is a (k + 2)-
place function. The function defined by primitive recursion from f and g is
the (k + 1)-place function h defined by the equations

h(x0, . . . , xk−1, y) = f(x0, . . . , xk−1)

h(x0, . . . , xk−1, y + 1) = g(x0, . . . , xk−1, y, h(x0, . . . , xk−1, y))

Definition rec.2.cmp:rec:prf:

defn:composition

Suppose f is a k-place function, and g0, . . . , gk−1 are k
functions which are all n-place. The function defined by composition from f
and g0, . . . , gk−1 is the n-place function h defined by

h(x0, . . . , xn−1) = f(g0(x0, . . . , xn−1), . . . , gk−1(x0, . . . , xn−1)).

In addition to succ and the projection functions

Pn
i (x0, . . . , xn−1) = xi,

for each natural number n and i < n, we will include among the primitive
recursive functions the function zero(x) = 0.

Definition rec.3. The set of primitive recursive functions is the set of func-
tions from Nn to N, defined inductively by the following clauses:

1. zero is primitive recursive.

2. succ is primitive recursive.

3. Each projection function Pn
i is primitive recursive.

4. If f is a k-place primitive recursive function and g0, . . . , gk−1 are n-place
primitive recursive functions, then the composition of f with g0, . . . , gk−1
is primitive recursive.

5. If f is a k-place primitive recursive function and g is a k+2-place primitive
recursive function, then the function defined by primitive recursion from
f and g is primitive recursive.

explanationPut more concisely, the set of primitive recursive functions is the smallest
set containing zero, succ, and the projection functions Pn

j , and which is closed
under composition and primitive recursion.

Another way of describing the set of primitive recursive functions keeps
track of the “stage” at which a function enters the set. Let S0 denote the set of
starting functions: zero, succ, and the projections. Once Si has been defined,

pr-functions rev: ee4902c (2018-12-01) by OLP / CC–BY 1

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


let Si+1 be the set of all functions you get by applying a single instance of
composition or primitive recursion to functions in Si. Then

S =
⋃
i∈N

Si

is the set of all primitive recursive functions
Let us verify that add is a primitive recursive function.

Proposition rec.4. The addition function add(x, y) = x + y is primitive
recursive.

Proof. We already have a primitive recursive definition of add in terms of two
functions f and g which matches the format of Definition rec.1:

add(x0, 0) = f(x0) = x0

add(x0, y + 1) = g(x0, y, add(x0, y)) = succ(add(x0, y))

So add is primitive recursive provided f and g are as well. f(x0) = x0 = P 1
0 (x0),

and the projection functions count as primitive recursive, so f is primitive
recursive. The function g is the three-place function g(x0, y, z) defined by

g(x0, y, z) = succ(z).

This does not yet tell us that g is primitive recursive, since g and succ are not
quite the same function: succ is one-place, and g has to be three-place. But
we can define g “officially” by composition as

g(x0, y, z) = succ(P 3
2 (x0, y, z))

Since succ and P 3
2 count as primitive recursive functions, g does as well, since

it can be defined by composition from primitive recursive functions.

Proposition rec.5. cmp:rec:prf:

prop:mult-pr

The multiplication function mult(x, y) = x·y is primitive
recursive.

Proof. Exercise.

Problem rec.1. Prove Proposition rec.5 by showing that the primitive recur-
sive definition of mult is can be put into the form required by Definition rec.1
and showing that the corresponding functions f and g are primitive recursive.

Example rec.6. Here’s our very first example of a primitive recursive defini-
tion:

h(0) = 1

h(y + 1) = 2 · h(y).

2 pr-functions rev: ee4902c (2018-12-01) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


This function cannot fit into the form required by Definition rec.1, since k = 0.
The definition also involves the constants 1 and 2. To get around the first
problem, let’s introduce a dummy argument and define the function h′:

h′(x0, 0) = f(x0) = 1

h′(x0, y + 1) = g(x0, y, h
′(x0, y)) = 2 · h′(x0, y).

The function f(x0) = 1 can be defined from succ and zero by composition:
f(x0) = succ(zero(x0)). The function g can be defined by composition from
g′(z) = 2 · z and projections:

g(x0, y, z) = g′(P 3
2 (x0, y, z))

and g′ in turn can be defined by composition as

g′(z) = mult(g′′(z), P 1
0 (z))

and

g′′(z) = succ(f(z)),

where f is as above: f(z) = succ(zero(z)). Now that we have h′ we can use
composition again to let h(y) = h′(P 1

0 (y), P 1
0 (y)). This shows that h can be

defined from the basic functions using a sequence of compositions and primitive
recursions, so h is primitive recursive.

Photo Credits

Bibliography

3


	Primitive Recursion Functions
	Photo Credits
	Bibliography

