rec.1 Primitive Recursion Functions

Let us record again how we can define new functions from existing ones using
primitive recursion and composition.

Definition rec.1. Suppose f is a k-place function ($k \geq 1$) and g is a $(k+2)$-
place function. The function defined by \textit{primitive recursion from f and g} is
the $(k+1)$-place function h defined by the equations

\[h(x_0, \ldots, x_{k-1}, 0) = f(x_0, \ldots, x_{k-1}) \]
\[h(x_0, \ldots, x_{k-1}, y + 1) = g(x_0, \ldots, x_{k-1}, y, h(x_0, \ldots, x_{k-1}, y)) \]

Definition rec.2. Suppose f is a k-place function, and g_0, \ldots, g_{k-1} are k
functions which are all n-place. The function defined by \textit{composition from f
and g_0, \ldots, g_{k-1}} is the n-place function h defined by

\[h(x_0, \ldots, x_{n-1}) = f(g_0(x_0, \ldots, x_{n-1}), \ldots, g_{k-1}(x_0, \ldots, x_{n-1})) \]

In addition to succ and the projection functions

\[P^n_i(x_0, \ldots, x_{n-1}) = x_i, \]

for each natural number n and $i < n$, we will include among the primitive
recursive functions the function $\text{zero}(x) = 0$.

Definition rec.3. The set of primitive recursive functions is the set of functions
from \mathbb{N}^n to \mathbb{N}, defined inductively by the following clauses:

1. zero is primitive recursive.
2. succ is primitive recursive.
3. Each projection function P^n_i is primitive recursive.
4. If f is a k-place primitive recursive function and g_0, \ldots, g_{k-1} are n-place
 primitive recursive functions, then the composition of f with g_0, \ldots, g_{k-1}
is primitive recursive.
5. If f is a k-place primitive recursive function and g is a $k+2$-place primitive
 recursive function, then the function defined by primitive recursion from
 f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest set
containing zero, succ, and the projection functions P^n_i, and which is closed
under composition and primitive recursion.

Another way of describing the set of primitive recursive functions is by
defining it in terms of “stages.” Let S_0 denote the set of starting functions:
zero, succ, and the projections. These are the primitive recursive functions of
stage 0. Once a stage S_i has been defined, let S_{i+1} be the set of all functions
you get by applying a single instance of composition or primitive recursion to functions already in \(S_i \). Then

\[
S = \bigcup_{i \in \mathbb{N}} S_i
\]

is the set of all primitive recursive functions.

Proposition rec.4. The addition function \(\text{add}(x, y) = x + y \) is primitive recursive.

Proof. We already have a primitive recursive definition of add in terms of two functions \(f \) and \(g \) which matches the format of Definition rec.1:

\[
\begin{align*}
\text{add}(x_0, 0) &= f(x_0) = x_0 \\
\text{add}(x_0, y + 1) &= g(x_0, y, \text{add}(x_0, y)) = \text{succ}(\text{add}(x_0, y))
\end{align*}
\]

So add is primitive recursive provided \(f \) and \(g \) are as well. \(f(x_0) = x_0 = P^1_0(x_0) \), and the projection functions count as primitive recursive, so \(f \) is primitive recursive. The function \(g \) is the three-place function \(g(x_0, y, z) \) defined by

\[
g(x_0, y, z) = \text{succ}(z).
\]

This does not yet tell us that \(g \) is primitive recursive, since \(g \) and \(\text{succ} \) are not quite the same function: \(\text{succ} \) is one-place, and \(g \) has to be three-place. But we can define \(g \) “officially” by composition as

\[
g(x_0, y, z) = \text{succ}(P^3_2(x_0, y, z))
\]

Since \(\text{succ} \) and \(P^3_2 \) count as primitive recursive functions, \(g \) does as well, since it can be defined by composition from primitive recursive functions.

Proposition rec.5. The multiplication function \(\text{mult}(x, y) = x \cdot y \) is primitive recursive.

Proof. Exercise.

Problem rec.1. Prove Proposition rec.5 by showing that the primitive recursive definition of \(\text{mult} \) can be put into the form required by Definition rec.1 and showing that the corresponding functions \(f \) and \(g \) are primitive recursive.

Example rec.6. Here’s our very first example of a primitive recursive definition:

\[
\begin{align*}
h(0) &= 1 \\
h(y + 1) &= 2 \cdot h(y).
\end{align*}
\]
This function cannot fit into the form required by Definition rec.1, since \(k = 0 \). The definition also involves the constants 1 and 2. To get around the first problem, let’s introduce a dummy argument and define the function \(h' \):

\[
\begin{align*}
 h'(x_0, 0) &= f(x_0) = 1 \\
 h'(x_0, y + 1) &= g(x_0, y, h'(x_0, y)) = 2 \cdot h'(x_0, y).
\end{align*}
\]

The function \(f(x_0) = 1 \) can be defined from succ and zero by composition: \(f(x_0) = \text{succ}(\text{zero}(x_0)) \). The function \(g \) can be defined by composition from \(g'(z) = 2 \cdot z \) and projections:

\[
g(x_0, y, z) = g'(P_3^1(x_0, y, z))
\]

and \(g' \) in turn can be defined by composition as

\[
g'(z) = \text{mult}(g''(z), P_0^1(z))
\]

and

\[
g''(z) = \text{succ}(f(z)),
\]

where \(f \) is as above: \(f(z) = \text{succ}(\text{zero}(z)) \). Now that we have \(h' \), we can use composition again to let \(h(y) = h'(P_0^1(y), P_0^1(y)) \). This shows that \(h \) can be defined from the basic functions using a sequence of compositions and primitive recursions, so \(h \) is primitive recursive.

Photo Credits

Bibliography