Let us record again how we can define new functions from existing ones using primitive recursion and composition.

Definition rec.1. Suppose f is a k-place function ($k \geq 1$) and g is a $(k + 2)$-place function. The function defined by *primitive recursion from* f and g is the $(k + 1)$-place function h defined by the equations

\[
\begin{align*}
 h(x_0, \ldots, x_{k-1}, 0) &= f(x_0, \ldots, x_{k-1}) \\
 h(x_0, \ldots, x_{k-1}, y + 1) &= g(x_0, \ldots, x_{k-1}, y, h(x_0, \ldots, x_{k-1}, y))
\end{align*}
\]

Definition rec.2. Suppose f is a k-place function, and g_0, \ldots, g_{k-1} are k functions which are all n-place. The function defined by *composition from* f and g_0, \ldots, g_{k-1} is the n-place function h defined by

\[
 h(x_0, \ldots, x_{n-1}) = f(g_0(x_0, \ldots, x_{n-1}), \ldots, g_{k-1}(x_0, \ldots, x_{n-1})).
\]

In addition to succ and the projection functions

\[
P^n_i(x_0, \ldots, x_{n-1}) = x_i,
\]

for each natural number n and $i < n$, we will include among the primitive recursive functions the function $\text{zero}(x) = 0$.

Definition rec.3. The set of primitive recursive functions is the set of functions from \mathbb{N}^n to \mathbb{N}, defined inductively by the following clauses:

1. zero is primitive recursive.
2. succ is primitive recursive.
3. Each projection function P^n_i is primitive recursive.
4. If f is a k-place primitive recursive function and g_0, \ldots, g_{k-1} are n-place primitive recursive functions, then the composition of f with g_0, \ldots, g_{k-1} is primitive recursive.
5. If f is a k-place primitive recursive function and g is a $k+2$-place primitive recursive function, then the function defined by primitive recursion from f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest set containing zero, succ, and the projection functions P^n_i, and which is closed under composition and primitive recursion.

Another way of describing the set of primitive recursive functions is by defining it in terms of “stages.” Let S_0 denote the set of starting functions: zero, succ, and the projections. These are the primitive recursive functions of stage 0. Once a stage S_i has been defined, let S_{i+1} be the set of all functions
you get by applying a single instance of composition or primitive recursion to
functions already in S_i. Then

$$S = \bigcup_{i \in \mathbb{N}} S_i$$

is the set of all primitive recursive functions.

Let us verify that add is a primitive recursive function.

Proposition rec.4. The addition function $\text{add}(x, y) = x + y$ is primitive recursive.

Proof. We already have a primitive recursive definition of add in terms of two functions f and g which matches the format of **Definition rec.1**:

\[
\begin{align*}
\text{add}(x_0, 0) &= f(x_0) = x_0 \\
\text{add}(x_0, y + 1) &= g(x_0, y, \text{add}(x_0, y)) = \text{succ}(\text{add}(x_0, y))
\end{align*}
\]

So add is primitive recursive provided f and g are as well. $f(x_0) = x_0 = P^1_0(x_0)$, and the projection functions count as primitive recursive, so f is primitive recursive. The function g is the three-place function $g(x_0, y, z)$ defined by

$$g(x_0, y, z) = \text{succ}(z).$$

This does not yet tell us that g is primitive recursive, since g and succ are not quite the same function: succ is one-place, and g has to be three-place. But we can define g “officially” by composition as

$$g(x_0, y, z) = \text{succ}(P^3_2(x_0, y, z))$$

Since succ and P^3_2 count as primitive recursive functions, g does as well, since it can be defined by composition from primitive recursive functions. □

Proposition rec.5. The multiplication function $\text{mult}(x, y) = x \cdot y$ is primitive recursive.

Proof. Exercise. □

Problem rec.1. Prove **Proposition rec.5** by showing that the primitive recursive definition of mult is can be put into the form required by **Definition rec.1** and showing that the corresponding functions f and g are primitive recursive.

Example rec.6. Here’s our very first example of a primitive recursive definition:

\[
\begin{align*}
h(0) &= 1 \\
h(y + 1) &= 2 \cdot h(y).
\end{align*}
\]
This function cannot fit into the form required by Definition rec.1, since \(k = 0 \).
The definition also involves the constants 1 and 2. To get around the first problem, let’s introduce a dummy argument and define the function \(h' \):

\[
\begin{align*}
h'(x_0, 0) &= f(x_0) = 1 \\
h'(x_0, y + 1) &= g(x_0, y, h'(x_0, y)) = 2 \cdot h'(x_0, y).
\end{align*}
\]

The function \(f(x_0) = 1 \) can be defined from succ and zero by composition: \(f(x_0) = \text{succ}(\text{zero}(x_0)) \). The function \(g \) can be defined by composition from \(g'(z) = 2 \cdot z \) and projections:

\[
g(x_0, y, z) = g'(P^3_2(x_0, y, z))
\]

and \(g' \) in turn can be defined by composition as

\[
g'(z) = \text{mult}(g''(z), P^1_0(z))
\]

and

\[
g''(z) = \text{succ}(f(z)),
\]

where \(f \) is as above: \(f(z) = \text{succ}(\text{zero}(z)) \). Now that we have \(h' \), we can use composition again to let \(h(y) = h'(P^1_0(y), P^0_0(y)) \). This shows that \(h \) can be defined from the basic functions using a sequence of compositions and primitive recursions, so \(h \) is primitive recursive.

Photo Credits

Bibliography