cmp:rec:prf:
sec

cmp:rec:prf:

defn:primitive-recursion

cmp:rec:prf:

defn:composition

rec.l1 Primitive Recursion Functions

Let us record again how we can define new functions from existing ones
using primitive recursion and composition.

Definition rec.1. Suppose f is a k-place function (k > 1) and g is a (k + 2)-
place function. The function defined by primitive recursion from f and g is
the (k + 1)-place function h defined by the equations

h(zo,...,xp—1,y) = f(xo,...,xR_1)
h(zxo,...,xp_1,y+1) = g(zo,...,xr_1,y, h(z0, ..., Tk-1,Y))

Definition rec.2. Suppose f is a k-place function, and gg, ..., gx—1 are k
functions which are all n-place. The function defined by composition from f
and gg, ---, gk—1 is the n-place function h defined by

B(@0s- - 1) = F(G0(T0r -+ s Tn 1)y Gh1(T0, -+, Tn1)):
In addition to succ and the projection functions
Pin(ﬂj'o, e ,ZL‘n_l) = T,

for each natural number n and 7 < n, we will include among the primitive
recursive functions the function zero(z) = 0.

Definition rec.3. The set of primitive recursive functions is the set of func-
tions from N” to N, defined inductively by the following clauses:

1. zero is primitive recursive.
2. succ is primitive recursive.

3. Each projection function P is primitive recursive.

4. If f is a k-place primitive recursive function and gg, ..., gx_1 are n-place
primitive recursive functions, then the composition of f with gq, ..., gr—1
is primitive recursive.

5. If f is a k-place primitive recursive function and g is a k+2-place primitive
recursive function, then the function defined by primitive recursion from
f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest explanation
set containing zero, succ, and the projection functions P}, and which is closed
under composition and primitive recursion.
Another way of describing the set of primitive recursive functions keeps
track of the “stage” at which a function enters the set. Let Sy denote the set of
starting functions: zero, succ, and the projections. Once S; has been defined,

pr-functions rev: ee4902c (2018-12-01) by OLP / CC-BY 1

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

let S;+1 be the set of all functions you get by applying a single instance of
composition or primitive recursion to functions in S;. Then

s=Js
€N

is the set of all primitive recursive functions
Let us verify that add is a primitive recursive function.

Proposition rec.4. The addition function add(z,y) = x + y is primitive
recursive.

Proof. We already have a primitive recursive definition of add in terms of two
functions f and g which matches the format of Definition rec.1:

add(zo,0) = f(z0) = xo
add(zo,y + 1) = g(xo, y, add(x0,y)) = succ(add(xo, y))

So add is primitive recursive provided f and g are as well. f(xq) = x¢ = Pi(x0),
and the projection functions count as primitive recursive, so f is primitive
recursive. The function g is the three-place function g(z,y, z) defined by

9(z0,y,2) = succ(z).

This does not yet tell us that g is primitive recursive, since g and succ are not
quite the same function: succ is one-place, and g has to be three-place. But
we can define g “officially” by composition as

g($0a Y, Z) = SllCC(PQ?)(.’L‘(), Y, Z))

Since succ and P count as primitive recursive functions, g does as well, since
it can be defined by composition from primitive recursive functions. O

Proposition rec.5. The multiplication function mult(xz = -y 18 primitive cmp:recprf:
b)
recursive. prop:mult-pr

Proof. Exercise. O

Problem rec.1. Prove Proposition rec.5 by showing that the primitive recur-
sive definition of mult is can be put into the form required by Definition rec.1
and showing that the corresponding functions f and g are primitive recursive.

Example rec.6. Here’s our very first example of a primitive recursive defini-
tion:

h(0) =1
h(y +1)=2-h(y).

2 pr-functions rev: ee4902c (2018-12-01) by OLP / CC-BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

This function cannot fit into the form required by Definition rec.1, since k = 0.
The definition also involves the constants 1 and 2. To get around the first
problem, let’s introduce a dummy argument and define the function h’:

W (20,0) = f(z0) =1
h,(l’o, Y+ 1) = g(l’(), Y, h/($05 y)) =2 h/(‘rOa y)
The function f(xo) = 1 can be defined from succ and zero by composition:
f(zo) = succ(zero(xp)). The function g can be defined by composition from
g'(z) = 2 z and projections:

9(z0,y,2) = g' (P (0,9, 2))
and ¢’ in turn can be defined by composition as
g'(2) = mult(g"(2), P (2))
and

9" (2) = suce(f(2)),

where f is as above: f(z) = succ(zero(z)). Now that we have h’ we can use
composition again to let h(y) = h'(Pi(y), Pi(y)). This shows that h can be
defined from the basic functions using a sequence of compositions and primitive
recursions, so h is primitive recursive.

Photo Credits

Bibliography

	Primitive Recursion Functions
	Photo Credits
	Bibliography

