Suppose a function h is defined by primitive recursion
\[
\begin{align*}
h(\bar{x}, 0) &= f(\bar{x}) \\
h(\bar{x}, y) &= g(\bar{x}, y, h(\bar{x}, y))
\end{align*}
\]
and suppose the functions f and g are computable. (We use \bar{x} to abbreviate x_0, \ldots, x_{k-1}.) Then $h(\bar{x}, 0)$ can obviously be computed, since it is just $f(\bar{x})$ which we assume is computable. $h(\bar{x}, 1)$ can then also be computed, since $1 = 0 + 1$ and so $h(\bar{x}, 1)$ is just
\[
h(\bar{x}, 1) = g(\bar{x}, 0, h(\bar{x}, 0)) = g(\bar{x}, 0, f(\bar{x})).
\]
We can go on in this way and compute
\[
\begin{align*}
h(\bar{x}, 2) &= g(\bar{x}, 1, h(\bar{x}, 1)) = g(\bar{x}, 1, g(\bar{x}, 0, f(\bar{x}))) \\
h(\bar{x}, 3) &= g(\bar{x}, 2, h(\bar{x}, 2)) = g(\bar{x}, 2, g(\bar{x}, 1, g(\bar{x}, 0, f(\bar{x})))) \\
h(\bar{x}, 4) &= g(\bar{x}, 3, h(\bar{x}, 3)) = g(\bar{x}, 3, g(\bar{x}, 2, g(\bar{x}, 1, g(\bar{x}, 0, f(\bar{x})))))) \\
&\vdots
\end{align*}
\]
Thus, to compute $h(\bar{x}, y)$ in general, successively compute $h(\bar{x}, 0), h(\bar{x}, 1), \ldots$, until we reach $h(\bar{x}, y)$.

Thus, a primitive recursive definition yields a new computable function if the functions f and g are computable. Composition of functions also results in a computable function if the functions f and g_i are computable.

Since the basic functions zero, succ, and P^n_i are computable, and composition and primitive recursion yield computable functions from computable functions, this means that every primitive recursive function is computable.

Photo Credits

Bibliography