To motivate the definition of the recursive functions, note that our proof that there are computable functions that are not primitive recursive actually establishes much more. The argument was simple: all we used was the fact that it is possible to enumerate functions f_0, f_1, \ldots such that, as a function of x and y, $f_x(y)$ is computable. So the argument applies to any class of functions that can be enumerated in such a way. This puts us in a bind: we would like to describe the computable functions explicitly; but any explicit description of a collection of computable functions cannot be exhaustive!

The way out is to allow partial functions to come into play. We will see that it is possible to enumerate the partial computable functions. In fact, we already pretty much know that this is the case, since it is possible to enumerate Turing machines in a systematic way. We will come back to our diagonal argument later, and explore why it does not go through when partial functions are included.

The question is now this: what do we need to add to the primitive recursive functions to obtain all the partial recursive functions? We need to do two things:

1. Modify our definition of the primitive recursive functions to allow for partial functions as well.
2. Add something to the definition, so that some new partial functions are included.

The first is easy. As before, we will start with zero, successor, and projections, and close under composition and primitive recursion. The only difference is that we have to modify the definitions of composition and primitive recursion to allow for the possibility that some of the terms in the definition are not defined. If f and g are partial functions, we will write $f(x) \downarrow$ to mean that f is defined at x, i.e., x is in the domain of f; and $f(x) \uparrow$ to mean the opposite, i.e., that f is not defined at x. We will use $f(x) \simeq g(x)$ to mean that either $f(x)$ and $g(x)$ are both undefined, or they are both defined and equal. We will use these notations for more complicated terms as well. We will adopt the convention that if h and g_0, \ldots, g_k all are partial functions, then

$$h(g_0(\vec{x}), \ldots, g_k(\vec{x}))$$

is defined if and only if each g_i is defined at \vec{x}, and h is defined at $g_0(\vec{x})$, $\ldots, g_k(\vec{x})$. With this understanding, the definitions of composition and primitive recursion for partial functions is just as above, except that we have to replace “=” by “\simeq”.

What we will add to the definition of the primitive recursive functions to obtain partial functions is the unbounded search operator. If $f(x, \vec{z})$ is any partial function on the natural numbers, define $\mu x \ f(x, \vec{z})$ to be

the least x such that $f(0, \vec{z}), f(1, \vec{z}), \ldots, f(x, \vec{z})$ are all defined, and $f(x, \vec{z}) = 0$, if such an x exists.
with the understanding that $\mu x \ f(x, \vec{z})$ is undefined otherwise. This defines $\mu x \ f(x, \vec{z})$ uniquely.

Note that our definition makes no reference to Turing machines, or algorithms, or any specific computational model. But like composition and primitive recursion, there is an operational, computational intuition behind unbounded search. When it comes to the computability of a partial function, arguments where the function is undefined correspond to inputs for which the computation does not halt. The procedure for computing $\mu x \ f(x, \vec{z})$ will amount to this: compute $f(0, \vec{z}), f(1, \vec{z}), f(2, \vec{z})$ until a value of 0 is returned. If any of the intermediate computations do not halt, however, neither does the computation of $\mu x \ f(x, \vec{z})$.

If $R(x, \vec{z})$ is any relation, $\mu x \ R(x, \vec{z})$ is defined to be $\mu x \ (1 - \chi_{R(x, \vec{z})})$. In other words, $\mu x \ R(x, \vec{z})$ returns the least value of x such that $R(x, \vec{z})$ holds. So, if $f(x, \vec{z})$ is a total function, $\mu x \ f(x, \vec{z})$ is the same as $\mu x \ (f(x, \vec{z}) = 0)$. But note that our original definition is more general, since it allows for the possibility that $f(x, \vec{z})$ is not everywhere defined (whereas, in contrast, the characteristic function of a relation is always total).

Definition rec.1. The set of *partial recursive functions* is the smallest set of partial functions from the natural numbers to the natural numbers (of various arities) containing zero, successor, and projections, and closed under composition, primitive recursion, and unbounded search.

Of course, some of the partial recursive functions will happen to be total, i.e., defined for every argument.

Definition rec.2. The set of *recursive functions* is the set of partial recursive functions that are total.

A recursive function is sometimes called “total recursive” to emphasize that it is defined everywhere.

Photo Credits

Bibliography