rec.1 Primitive Recursion Notations

cmp:rec:not:

sec

One advantage to having the precise inductive description of the primitive recursive functions is that we can be systematic in describing them. For example, we can assign a "notation" to each such function, as follows. Use symbols zero, succ, and P_i^n for zero, successor, and the projections. Now suppose h is defined by composition from a k-place function f and n-place functions g_0, \ldots, g_{k-1} , and we have assigned notations F, G_0, \ldots, G_{k-1} to the latter functions. Then, using a new symbol $\operatorname{Comp}_{k,n}$, we can denote the function h by $\operatorname{Comp}_{k,n}[F, G_0, \ldots, G_{k-1}]$.

For functions defined by primitive recursion, we can use analogous notations. Suppose the (k + 1)-ary function h is defined by primitive recursion from the k-ary function f and the (k + 2)-ary function g, and the notations assigned to f and g are F and G, respectively. Then the notation assigned to his $\operatorname{Rec}_k[F, G]$.

Recall that the addition function is defined by primitive recursion as

$$add(x_0, 0) = P_0^1(x_0) = x_0$$

add(x_0, y + 1) = succ(P_2^3(x_0, y, add(x_0, y))) = add(x_0, y) + 1

Here the role of f is played by P_0^1 , and the role of g is played by $\operatorname{succ}(P_2^3(x_0, y, z))$, which is assigned the notation $\operatorname{Comp}_{1,3}[\operatorname{succ}, P_2^3]$ as it is the result of defining a function by composition from the 1-ary function succ and the 3-ary function P_2^3 . With this setup, we can denote the addition function by

$$\operatorname{Rec}_{1}[P_{0}^{1}, \operatorname{Comp}_{1,3}[\operatorname{succ}, P_{2}^{3}]]$$

Having these notations sometimes proves useful, e.g., when enumerating primitive recursive functions.

Problem rec.1. Give the complete primitive recursive notation for mult.

Photo Credits

Bibliography