rec.1 Primitive Recursion Notations cmp:rec:not: One advantage to having the precise inductive description of the primitive recursive functions is that we can be systematic in describing them. For example, we can assign a "notation" to each such function, as follows. Use symbols zero, succ, and P_i^n for zero, successor, and the projections. Now suppose f is defined by composition from a k-place function h and n-place functions g_0, \ldots, g_{k-1} , and we have assigned notations H, G_0, \ldots, G_{k-1} to the latter functions. Then, using a new symbol $\operatorname{Comp}_{k,n}$, we can denote the function f by $\operatorname{Comp}_{k,n}[H,G_0,\ldots,G_{k-1}]$. For the functions defined by primitive recursion, we can use analogous notations of the form $\operatorname{Rec}_k[G,H]$, where k+1 is the arity of the function being defined. With this setup, we can denote the addition function by $\operatorname{Rec}_2[P_0^1,\operatorname{Comp}_{1,3}[\operatorname{succ},P_2^3]].$ Having these notations sometimes proves useful. **Problem rec.1.** Give the complete primitive recursive notation for mult. **Photo Credits** Bibliography