One advantage to having the precise inductive description of the primitive recursive functions is that we can be systematic in describing them. For example, we can assign a “notation” to each such function, as follows. Use symbols zero, succ, and P_i^n for zero, successor, and the projections. Now suppose f is defined by composition from a k-place function h and n-place functions g_0, \ldots, g_{k-1}, and we have assigned notations H, G_0, \ldots, G_{k-1} to the latter functions. Then, using a new symbol Comp$_{k,n}$, we can denote the function f by Comp$_{k,n}[H,G_0,\ldots,G_{k-1}]$. For the functions defined by primitive recursion, we can use analogous notations of the form Rec$_k[G,H]$, where $k+1$ is the arity of the function being defined. With this setup, we can denote the addition function by

$$\text{Rec}_2[P^1_0,\text{Comp}_1[\text{succ},P^3_2]].$$

Having these notations sometimes proves useful.

Problem rec.1. Give the complete primitive recursive notation for mult.

Photo Credits

Bibliography