Introduction

In order to develop a mathematical theory of computability, one has to, first of all, develop a model of computability. We now think of computability as the kind of thing that computers do, and computers work with symbols. But at the beginning of the development of theories of computability, the paradigmatic example of computation was numerical computation. Mathematicians were always interested in number-theoretic functions, i.e., functions $f : \mathbb{N}^n \to \mathbb{N}$ that can be computed. So it is not surprising that at the beginning of the theory of computability, it was such functions that were studied. The most familiar examples of computable numerical functions, such as addition, multiplication, exponentiation (of natural numbers) share an interesting feature: they can be defined recursively. It is thus quite natural to attempt a general definition of computable function on the basis of recursive definitions. Among the many possible ways to define number-theoretic functions recursively, one particular simple pattern of definition here becomes central: so-called primitive recursion.

In addition to computable functions, we might be interested in computable sets and relations. A set is computable if we can compute the answer to whether or not a given number is an element of the set, and a relation is computable iff we can compute whether or not a tuple $\langle n_1, \ldots, n_k \rangle$ is an element of the relation. By considering the characteristic function of a set or relation, discussion of computable sets and relations can be subsumed under that of computable functions. Thus we can define primitive recursive relations as well, e.g., the relation “n evenly divides m” is a primitive recursive relation.

Primitive recursive functions—those that can be defined using just primitive recursion—are not, however, the only computable number-theoretic functions. Many generalizations of primitive recursion have been considered, but the most powerful and widely-accepted additional way of computing functions is by unbounded search. This leads to the definition of partial recursive functions, and a related definition to general recursive functions. General recursive functions are computable and total, and the definition characterizes exactly the partial recursive functions that happen to be total. Recursive functions can simulate every other model of computation (Turing machines, lambda calculus, etc.) and so represent one of the many accepted models of computation.

Photo Credits

Bibliography