The *halting problem* in general is the problem of deciding, given the specification \(e \) (e.g., program) of a computable function and a number \(n \), whether the computation of the function on input \(n \) halts, i.e., produces a result. Famously, Alan Turing proved that this problem itself cannot be solved by a computable function, i.e., the function

\[
 h(e, n) = \begin{cases}
 1 & \text{if computation } e \text{ halts on input } n \\
 0 & \text{otherwise,}
 \end{cases}
\]

is not computable.

In the context of partial recursive functions, the role of the specification of a program may be played by the index \(e \) given in Kleene’s normal form theorem. If \(f \) is a partial recursive function, any \(e \) for which the equation in the normal form theorem holds, is an index of \(f \). Given a number \(e \), the normal form theorem states that

\[
 \varphi_e(x) \simeq U(\mu s T(e, x, s))
\]

is partial recursive, and for every partial recursive \(f : \mathbb{N} \to \mathbb{N} \), there is an \(e \in \mathbb{N} \) such that \(\varphi_e(x) \simeq f(x) \) for all \(x \in \mathbb{N} \). In fact, for each such \(f \) there is not just one, but infinitely many such \(e \). The *halting function* \(h \) is defined by

\[
 h(e, n) = \begin{cases}
 1 & \text{if } \varphi_e(n) \downarrow \\
 0 & \text{otherwise.}
 \end{cases}
\]

Note that \(h(e, x) = 0 \) if \(\varphi_e(x) \uparrow \), but also when \(e \) is not the index of a partial recursive function at all.

Theorem rec.1. The halting function \(h \) is not partial recursive.

Proof. If \(h \) were partial recursive, we could define

\[
 d(y) = \begin{cases}
 1 & \text{if } \varphi_y(y) \uparrow \text{ or } y \text{ is not the index of a partial recursive function} \\
 \mu x \neq x & \text{otherwise.}
 \end{cases}
\]

From this definition it follows that

1. \(d(y) \downarrow \) iff \(\varphi_y(y) \uparrow \) or \(y \) is not the index of a partial recursive function.

2. \(d(y) \uparrow \) iff \(\varphi_y(y) \downarrow \).

If \(h \) were partial recursive, then \(d \) would be partial recursive as well. Thus, by the Kleene normal form theorem, it has an index \(e_d \). Consider the value of \(h(e_d, e_d) \). There are two possible cases, 0 and 1.

1. If \(h(e_d, e_d) = 1 \) then \(\varphi_{e_d}(e_d) \downarrow \). But \(\varphi_{e_d} \simeq d \), and \(d(e_d) \) is defined iff \(h(e_d, e_d) = 0 \). So \(h(e_d, e_d) \neq 1 \).
2. If $h(e_d, e_d) = 0$ then either e_d is not the index of a partial recursive function, or it is and $\varphi_{e_d}(e_d) \uparrow$. But again, $\varphi_{e_d} \simeq d$, and $d(e_d)$ is undefined iff $\varphi_{e_d}(e_d) \downarrow$.

The upshot is that e_d cannot, after all, be the index of a partial recursive function. But if h were partial recursive, d would be too, and so our definition of e_d as an index of it would be admissible. We must conclude that h cannot be partial recursive. □

Photo Credits

Bibliography